Wright E M, Hirsch J R, Loo D D, Zampighi G A
Department of Physiology, UCLA School of Medicine 90095-1751, USA.
J Exp Biol. 1997 Jan;200(Pt 2):287-93. doi: 10.1242/jeb.200.2.287.
Na+/glucose cotransporters (SGLTs) are expressed in the small intestine and the proximal renal tubule, where they play a central role in the absorption of glucose and galactose from food and the reabsorption of glucose from the glomerular filtrate. The regulation of intestinal sugar absorption occurs over two distinct time scales, one over days and the other over minutes. This review focuses on the mechanisms involved in the shorter-term regulation. Recent studies of the mouse intestine in vitro demonstrated that Na+/glucose cotransport is increased two- to eightfold within minutes by the application of forskolin, an agent that increases intracellular cyclic AMP levels. Here we explore how cyclic AMP may upregulate Na+/glucose cotransport. Our strategy was to express cloned SGLT1s in Xenopus laevis oocytes and then use electrophysiological methods to measure (i) the kinetics of Na+/glucose cotransport, (ii) the number of cotransporters in the plasma membrane, and (iii) the net rate of exo- and endocytosis before and after activation of protein kinases. To evaluate the role of cotransporter phosphorylation, we have examined the effect of protein kinase activation on various SGLT1 isoforms and other cotransporters. In oocytes expressing rabbit SGLT1, the activation of protein kinase A (PKA) increased the maximum rate of Na+/glucose cotransport by 30%, and the activation of protein kinase C (PKC) decreased the maximum rate of transport by 60%. Changes in maximum transport rates were accompanied by proportional changes in the number of cotransporters in the plasma membrane and by changes in the area of the membrane. We conclude that PKA and PKC regulate rabbit SGLT1 activity by modulating the number of cotransporters in the plasma membrane and that this occurs through regulation of exocytosis and endocytosis. Given the size of intracellular transport vesicles containing SGLT1, 100-120 nm in diameter, and the density of cotransporters in these vesicles, 10-20 per vesicle, we estimate that the net rate of SGLT1 vesicle exocytosis is about 10,000 s-1 and that this rate increases 100-fold after activation of PKA. The effect of PKA is independent of the presence or absence of consensus sites for phosphorylation on SGLT1. Surprisingly, the effects of PKA or PKC depend critically on the sequence of the contransporter being expressed in the oocyte, e.g. activation of PKC inhibited rabbit and rat SGLT1, but stimulated human SGLT1. This dependency suggests that the regulation of vesicle trafficking by protein kinases depends upon the structure of the cotransporter expressed in the oocyte. Similar considerations apply to other classes of cotransporters, such as the neurotransmitter and dipeptide cotransporters. Our working hypothesis is that the regulation of cotransporter expression by protein kinases occurs largely by regulated exo- and endocytosis, and that the effect of the protein kinases is indirect and determined by critical domains in the cotransporter.
钠/葡萄糖共转运蛋白(SGLTs)在小肠和近端肾小管中表达,它们在食物中葡萄糖和半乳糖的吸收以及肾小球滤液中葡萄糖的重吸收过程中发挥着核心作用。肠道糖吸收的调节发生在两个不同的时间尺度上,一个是数天,另一个是数分钟。本综述聚焦于短期调节所涉及的机制。最近对小鼠小肠进行的体外研究表明,通过应用福斯可林(一种可提高细胞内环磷酸腺苷水平的试剂),钠/葡萄糖共转运在数分钟内可增加2至8倍。在此,我们探讨环磷酸腺苷如何上调钠/葡萄糖共转运。我们的策略是在非洲爪蟾卵母细胞中表达克隆的SGLT1,然后使用电生理方法测量:(i)钠/葡萄糖共转运的动力学;(ii)质膜中共转运蛋白的数量;(iii)蛋白激酶激活前后胞吐作用和胞吞作用的净速率。为了评估共转运蛋白磷酸化的作用,我们研究了蛋白激酶激活对各种SGLT1同工型和其他共转运蛋白的影响。在表达兔SGLT1的卵母细胞中,蛋白激酶A(PKA)的激活使钠/葡萄糖共转运的最大速率提高了30%,而蛋白激酶C(PKC)的激活使转运的最大速率降低了60%。最大转运速率的变化伴随着质膜中共转运蛋白数量的相应变化以及膜面积的改变。我们得出结论,PKA和PKC通过调节质膜中共转运蛋白的数量来调节兔SGLT1的活性,这是通过对胞吐作用和胞吞作用的调节实现的。考虑到含有SGLT1的细胞内运输小泡的大小(直径为100 - 120 nm)以及这些小泡中共转运蛋白的密度(每个小泡中有10 - 20个),我们估计SGLT1小泡胞吐作用的净速率约为10000 s⁻¹,并且在PKA激活后该速率增加100倍。PKA的作用与SGLT1上是否存在磷酸化共有位点无关。令人惊讶的是,PKA或PKC的作用关键取决于在卵母细胞中表达的共转运蛋白的序列,例如PKC的激活抑制兔和大鼠的SGLT1,但刺激人SGLT1。这种依赖性表明蛋白激酶对小泡运输的调节取决于卵母细胞中表达的共转运蛋白的结构。类似的考虑也适用于其他类型的共转运蛋白,如神经递质和二肽共转运蛋白。我们的工作假设是,蛋白激酶对共转运蛋白表达的调节主要通过调节胞吐作用和胞吞作用来实现,并且蛋白激酶的作用是间接的,由共转运蛋白中的关键结构域决定。