Suppr超能文献

基于氨基酸组成预测蛋白质折叠类别。

Prediction of protein folding class from amino acid composition.

作者信息

Dubchak I, Holbrook S R, Kim S H

机构信息

Department of Chemistry, Lawrence Berkeley Laboratory, University of California, Berkeley 94720.

出版信息

Proteins. 1993 May;16(1):79-91. doi: 10.1002/prot.340160109.

Abstract

An empirical relation between the amino acid composition and three-dimensional folding pattern of several classes of proteins has been determined. Computer simulated neural networks have been used to assign proteins to one of the following classes based on their amino acid composition and size: (1) 4 alpha-helical bundles, (2) parallel (alpha/beta)8 barrels, (3) nucleotide binding fold, (4) immunoglobulin fold, or (5) none of these. Networks trained on the known crystal structures as well as sequences of closely related proteins are shown to correctly predict folding classes of proteins not represented in the training set with an average accuracy of 87%. Other folding motifs can easily be added to the prediction scheme once larger databases become available. Analysis of the neural network weights reveals that amino acids favoring prediction of a folding class are usually over represented in that class and amino acids with unfavorable weights are underrepresented in composition. The neural networks utilize combinations of these multiple small variations in amino acid composition in order to make a prediction. The favorably weighted amino acids in a given class also form the most intramolecular interactions with other residues in proteins of that class. A detailed examination of the contacts of these amino acids reveals some general patterns that may help stabilize each folding class.

摘要

已确定几类蛋白质的氨基酸组成与三维折叠模式之间的经验关系。计算机模拟神经网络已被用于根据蛋白质的氨基酸组成和大小将其归为以下类别之一:(1) 4个α-螺旋束,(2) 平行(α/β)8桶,(3) 核苷酸结合折叠,(4) 免疫球蛋白折叠,或(5) 不属于上述任何一类。在已知晶体结构以及密切相关蛋白质序列上训练的网络能够正确预测训练集中未出现的蛋白质的折叠类别,平均准确率为87%。一旦有更大的数据库可用,其他折叠基序可以很容易地添加到预测方案中。对神经网络权重的分析表明,有利于预测折叠类别的氨基酸在该类别中通常占比过高,而权重不利的氨基酸在组成中占比过低。神经网络利用氨基酸组成中这些多个小变化的组合来进行预测。给定类别中权重有利的氨基酸在该类别的蛋白质中也与其他残基形成最多的分子内相互作用。对这些氨基酸的接触进行详细检查揭示了一些可能有助于稳定每个折叠类别的一般模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验