Zidansek A, Blinc A, Lahajnar G, Keber D, Blinc R
J. Stefan Institute, University of Ljubljana, Slovenia.
Biophys J. 1995 Sep;69(3):803-9. doi: 10.1016/S0006-3495(95)79954-4.
One-dimensional modeling of fibrinolysis (Senf, 1979; Zidansek and Blinc, 1991; Diamond and Anand, 1993) has accounted for the dissolution velocity, but the shape of the lysing patterns can be explained only by two- or three- drug-induced blood clot dissolution patterns obtained by proton nuclear magnetic resonance imaging, which can be described by the enzyme transport-limited system of fibrinolytic chemical equations with diffusion and perfusion terms (Zidansek and Blinc, 1991) in the reaction time approximation if the random character of gel porosity is taken into account. A two-dimensional calculation based on the Hele-Shaw random walk models (Kadanoff, 1985; Liang, 1986) leads to fractal lysing patterns as, indeed, is observed. The fractal dimension of the experimental lysing patterns changes from 1.2 at the beginning of the experiments to a maximum of approximately 1.3 in the middle and then decreases toward one when the clot is recanalized.
纤维蛋白溶解的一维模型(森夫,1979年;齐丹塞克和布林克,1991年;戴蒙德和阿南德,1993年)已经考虑了溶解速度,但溶解模式的形状只能通过质子核磁共振成像获得的二维或三维药物诱导的血凝块溶解模式来解释,如果考虑凝胶孔隙率的随机特性,在反应时间近似下,这可以由具有扩散和灌注项的纤维蛋白溶解化学方程的酶传输受限系统来描述(齐丹塞克和布林克,1991年)。基于赫勒-肖随机游走模型(卡达诺夫,1985年;梁,1986年)的二维计算确实会产生分形溶解模式,正如所观察到的那样。实验溶解模式的分形维数从实验开始时的1.2变化到中间时的最大值约1.3,然后在血凝块再通时向1减小。