Suppr超能文献

基于近端流场多普勒彩色血流图分析的反流流速精确计算新方法。在二尖瓣反流犬模型中的验证及在患者中的初步应用。

New method for accurate calculation of regurgitant flow rate based on analysis of Doppler color flow maps of the proximal flow field. Validation in a canine model of mitral regurgitation with initial application in patients.

作者信息

Schwammenthal E, Chen C, Giesler M, Sagie A, Guerrero J L, Vazquez de Prada J A, Hombach V, Weyman A E, Levine R A

机构信息

Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Boston 02114, USA.

出版信息

J Am Coll Cardiol. 1996 Jan;27(1):161-72. doi: 10.1016/0735-1097(95)00428-9.

Abstract

OBJECTIVES

The purpose of this study was to develop a rational and objective method for selecting a region in the proximal flow field where the hemispheric formula for calculating regurgitant flow rates by the flow convergence technique is most accurate.

BACKGROUND

A major obstacle to clinical implementation of the proximal flow convergence method is that it assumes hemispheric isovelocity contours throughout the Doppler color flow map, whereas contour shape depends critically on location in the flow field.

METHODS

Twenty mitral regurgitant flow rate stages were produced in six dogs by implanting grommet orifices into the anterior mitral leaflet and varying driving pressures so that actual peak flow rate could be determined from the known effective regurgitant orifice times the orifice velocity. Because plotting flow rate calculated by using a hemispheric formula versus alias velocities produces underestimation near the orifice and overestimation far from it, this plot was fitted to a polynomial function to allow identification of an inflection point within a relatively flat intermediate zone, where factors causing overestimation and underestimation are expected to be unimportant or balanced. The accuracy of flow rate calculation by the inflection point was compared with unselective and selective averaging techniques. Clinical relevance, initial feasibility and correlation with an independent measure were tested in 13 consecutive patients with mitral regurgitation who underwent cardiac catheterization.

RESULTS

  1. The accuracy of single-point calculations was improved by selecting points in the flat portion of the curve (y = 1.15x - 3.34, r = 0.87, SEE = 22.1 ml/s vs. y = 1.34x - 1.99, r = 0.71, SEE = 45.6 ml/s, p < 0.01). 2) Selective averaging of points in the flat portion of the curve further improved accuracy and decreased scatter compared with unselective averaging (y = 1.08x + 4.8, r = 0.96, SEE = 11.6 ml/s vs. y = 1.30x + 0.6, r = 0.90, SEE = 20.9 ml/s, p < 0.01). 3) The proposed algorithm for mathematically identifying the inflection point provided the best results (y = 0.96x + 4.5, r = 0.96, SEE = 9.9 ml/s), with a mean error of 1.6 +/- 9.7 ml/s vs. 11.4 +/- 11.7 ml/s for selective averaging (p < 0.01). In patients, the proposed algorithm identified an inflection point at which calculated regurgitant volume agreed best with invasive measurements (y = 1.1x - 0.61, r = 0.93, SEE = 17 ml).

CONCLUSIONS

The accuracy of the proximal flow convergence method can be significantly improved by analyzing the flow field mathematically to identify the optimal isovelocity zone before using the hemispheric formula to calculate regurgitant flow rates. Because the proposed algorithm is objective, operator independent and, thus, suitable for automatization, it could provide the clinician with a powerful quantitative tool to assess valvular regurgitation.

摘要

目的

本研究的目的是开发一种合理且客观的方法,用于在近端流场中选择一个区域,在此区域通过血流会聚技术计算反流流速的半球公式最为准确。

背景

近端血流会聚法临床应用的一个主要障碍是,它假定整个多普勒彩色血流图中的等速线为半球形,而等速线的形状在很大程度上取决于流场中的位置。

方法

通过在六只犬的二尖瓣前叶植入索环孔并改变驱动压力,产生了20个二尖瓣反流流速阶段,以便能够根据已知的有效反流孔面积乘以孔口速度来确定实际峰值流速。由于绘制使用半球公式计算的流速与别名速度的关系图会在孔口附近产生低估,而在远离孔口处产生高估,因此将该图拟合为多项式函数,以确定相对平坦的中间区域内的拐点,在该区域,导致高估和低估的因素预计不重要或相互平衡。将通过拐点计算流速的准确性与非选择性和选择性平均技术进行比较。对13例接受心脏导管检查的二尖瓣反流连续患者进行了临床相关性、初步可行性以及与独立测量值的相关性测试。

结果

1)通过在曲线平坦部分选择点,单点计算的准确性得到了提高(y = 1.15x - 3.34,r = 0.87,标准误 = 22.1 ml/s,而y = 1.34x - 1.99,r = 0.71,标准误 = 45.6 ml/s,p < 0.01)。2)与非选择性平均相比,对曲线平坦部分的点进行选择性平均进一步提高了准确性并减少了离散度(y = 1.08x + 4.8,r = 0.96,标准误 = 11.6 ml/s,而y = 1.30x + 0.6,r = 0.90,标准误 = 20.9 ml/s,p < 0.01)。3)用于数学识别拐点的算法提供了最佳结果(y = 0.96x + 4.5,r = 0.96,标准误 = 9.9 ml/s),平均误差为1.6 ± 9.7 ml/s,而选择性平均为11.4 ± 11.7 ml/s(p < 0.01)。在患者中,所提出的算法确定了一个拐点,在该点计算的反流容积与侵入性测量值最为一致(y = 1.1x - 0.61,r = 0.93,标准误 = 17 ml)。

结论

在使用半球公式计算反流流速之前,通过对流场进行数学分析以识别最佳等速区,近端血流会聚法的准确性可得到显著提高。由于所提出的算法是客观的、独立于操作者的,因此适合自动化,它可以为临床医生提供一个强大的定量工具来评估瓣膜反流。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验