Suppr超能文献

与醛缩酶结合的带3肽抑制剂的溶液结构:酪氨酸磷酸化调节结合的一种推测机制。

Solution structure of a band 3 peptide inhibitor bound to aldolase: a proposed mechanism for regulating binding by tyrosine phosphorylation.

作者信息

Schneider M L, Post C B

机构信息

Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907-1333, USA.

出版信息

Biochemistry. 1995 Dec 26;34(51):16574-84. doi: 10.1021/bi00051a005.

Abstract

Human erythrocyte band 3 inhibits glycolytic enzymes, including aldolase, by binding these cytoplasmic enzymes at its N-terminus. Phosphorylation of Y8 disrupts inhibition, and there is evidence that in vivo glycolysis levels in erythrocytes are regulated in part by a phosphorylation/dephosphorylation signaling pathway. The structural basis for control by phosphorylation has been investigated by NMR studies on a complex between aldolase and a synthetic peptide corresponding to the first 15 residues of band 3 (MEELQDDYEDMMEEN-NH2). The structure of this band 3 peptide (B3P) when it is bound to rabbit muscle aldolase was determined using the exchange-transferred nuclear Overhauser effect (ETNOE). Two hundred NMR structures for B3P were generated by simulated annealing molecular dynamics with NMR-derived distance restraints and excluding electrostatic terms. Twenty structures were further refined against a force field including full partial charges. The important conformational feature of B3P in the bound state is a folded loop structure involving residues 4-9 and M12 that surrounds Y8 and is stabilized by a hydrophobic cluster with the ring of Y8 sandwiched between the methyl groups of L4 and M12. Differential line broadening indicates that this loop structure binds aldolase in a relatively specific manner, while terminal regions are structurally heterogeneous. To better understand B3P inhibition of aldolase and the mechanism of phosphorylation control, a complex was modeled by docking B3P into the active site of aldolase and optimizing the fit using restrained molecular dynamics and energy minimization. The B3P loop is complementary in conformation to the beta-barrel central core containing the aldolase active site residues. Binding is electrostatic in nature with numerous ionic and hydrogen-bonding interactions involving several conserved lysine and arginine residues of aldolase. How phosphorylation of band 3 could disrupt inhibition was considered by modeling a phosphoryl moiety onto Y8 of B3P. An energetic analysis with respect to rigid phosphate rotation suggests that aldolase inhibition is reversed primarily because of electrostatic repulsion between B3P residues that destabilizes the B3P loop formed in the complex. This proposed intramolecular mechanism for blocking protein--protein association by electrostatic repulsion with the phosphoryl group may be applicable to other protein--protein signaling complexes.

摘要

人类红细胞带3通过在其N端结合这些细胞质酶来抑制糖酵解酶,包括醛缩酶。Y8的磷酸化会破坏这种抑制作用,并且有证据表明红细胞内的糖酵解水平在一定程度上受磷酸化/去磷酸化信号通路的调节。通过对醛缩酶与对应带3前15个残基的合成肽(MEELQDDYEDMMEEN-NH2)形成的复合物进行核磁共振研究,探究了磷酸化控制的结构基础。利用交换转移核Overhauser效应(ETNOE)确定了该带3肽(B3P)与兔肌肉醛缩酶结合时的结构。通过模拟退火分子动力学并结合核磁共振衍生的距离限制(不包括静电项)生成了200个B3P的核磁共振结构。针对包含完整部分电荷的力场对20个结构进行了进一步优化。结合状态下B3P的重要构象特征是一个折叠环结构,涉及残基4-9和M12,围绕着Y8,并通过一个疏水簇稳定,Y8的环夹在L4和M12的甲基之间。差异线宽表明这种环结构以相对特异的方式结合醛缩酶,而末端区域在结构上是异质的。为了更好地理解B3P对醛缩酶的抑制作用以及磷酸化控制机制,通过将B3P对接至醛缩酶的活性位点并使用受限分子动力学和能量最小化优化拟合来构建复合物模型。B3P环在构象上与包含醛缩酶活性位点残基的β桶中央核心互补。结合本质上是静电作用,涉及醛缩酶的几个保守赖氨酸和精氨酸残基的大量离子和氢键相互作用。通过在B3P的Y8上模拟一个磷酰基部分来考虑带3的磷酸化如何破坏抑制作用。关于刚性磷酸旋转的能量分析表明,醛缩酶抑制作用的逆转主要是由于B3P残基之间的静电排斥,这种排斥使复合物中形成的B3P环不稳定。这种通过与磷酰基的静电排斥来阻断蛋白质-蛋白质结合的分子内机制可能适用于其他蛋白质-蛋白质信号复合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验