Suppr超能文献

翻译后修饰磷酸化诱导的蛋白质环和螺旋的构象变化。

Conformational changes in protein loops and helices induced by post-translational phosphorylation.

作者信息

Groban Eli S, Narayanan Arjun, Jacobson Matthew P

机构信息

Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA.

出版信息

PLoS Comput Biol. 2006 Apr;2(4):e32. doi: 10.1371/journal.pcbi.0020032. Epub 2006 Apr 21.

Abstract

Post-translational phosphorylation is a ubiquitous mechanism for modulating protein activity and protein-protein interactions. In this work, we examine how phosphorylation can modulate the conformation of a protein by changing the energy landscape. We present a molecular mechanics method in which we phosphorylate proteins in silico and then predict how the conformation of the protein will change in response to phosphorylation. We apply this method to a test set comprised of proteins with both phosphorylated and non-phosphorylated crystal structures, and demonstrate that it is possible to predict localized phosphorylation-induced conformational changes, or the absence of conformational changes, with near-atomic accuracy in most cases. Examples of proteins used for testing our methods include kinases and prokaryotic response regulators. Through a detailed case study of cyclin-dependent kinase 2, we also illustrate how the computational methods can be used to provide new understanding of how phosphorylation drives conformational change, why substituting Glu or Asp for a phosphorylated amino acid does not always mimic the effects of phosphorylation, and how a phosphatase can "capture" a phosphorylated amino acid. This work illustrates how computational methods can be used to elucidate principles and mechanisms of post-translational phosphorylation, which can ultimately help to bridge the gap between the number of known sites of phosphorylation and the number of structures of phosphorylated proteins.

摘要

翻译后磷酸化是一种普遍存在的调节蛋白质活性和蛋白质-蛋白质相互作用的机制。在这项工作中,我们研究了磷酸化如何通过改变能量景观来调节蛋白质的构象。我们提出了一种分子力学方法,在该方法中,我们在计算机上对蛋白质进行磷酸化,然后预测蛋白质的构象将如何响应磷酸化而发生变化。我们将此方法应用于一个由具有磷酸化和非磷酸化晶体结构的蛋白质组成的测试集,并证明在大多数情况下,有可能以接近原子的精度预测局部磷酸化诱导的构象变化或构象变化的缺失。用于测试我们方法的蛋白质示例包括激酶和原核生物反应调节因子。通过对细胞周期蛋白依赖性激酶2的详细案例研究,我们还说明了如何使用计算方法来提供对磷酸化如何驱动构象变化、为什么用Glu或Asp替代磷酸化氨基酸并不总是模拟磷酸化的效果以及磷酸酶如何“捕获”磷酸化氨基酸的新理解。这项工作说明了如何使用计算方法来阐明翻译后磷酸化的原理和机制,这最终有助于弥合已知磷酸化位点数量与磷酸化蛋白质结构数量之间的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/736d/1447661/04ef0476c022/pcbi.0020032.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验