Suppr超能文献

T-lymphocytes from AIDS patients are unable to synthesize ribonucleotides de novo in response to mitogenic stimulation. Impaired pyrimidine responses are already evident at early stages of HIV-1 infection.

作者信息

Bofill M, Fairbanks L D, Ruckemann K, Lipman M, Simmonds H A

机构信息

Academic Department of Clinical Immunology, Royal Free Hospital School of Medicine, London, United Kingdom.

出版信息

J Biol Chem. 1995 Dec 15;270(50):29690-7.

PMID:8530357
Abstract

Proliferative defects have been reported at the level of DNA synthesis, even in T-lymphocytes from asymptomatic human immunodeficiency virus type-1+ (HIV-1+) patients. Since purine and pyrimidine ribonucleotide availability is crucial for proliferation, we compared the ability of HIV-1- and HIV-1+ T-lymphocytes (> 95% CD4+ and CD8+) to activate de novo biosynthetic and salvage pathways following phytohemagglutinin stimulation using 14C-labeled precursors. The striking abnormality already detectable in asymptomatic patients' cells was the impaired ability of CTP, UDP-Glc, and UTP pools to expand over 72 h (44-70% of control), although ATP and GTP pools and responses were normal. In symptomatic patients, resting T-cells showed markedly reduced pyrimidine pools (53-74% of control) with no change following activation. Relatively normal ATP, GTP, and NAD pools masked the same impaired response of de novo synthesis to activation, with ATP and GTP being reduced by 50% at 48 h. Purine salvage was more active than the control in unstimulated HIV-1+ cells. This impaired de novo synthesis in HIV-1+ T-lymphocytes severely restricts the availability of ribonucleotides for vital growth-related activities such as membrane expansion and strand break repair as well as DNA and RNA synthesis. The data indicate that resting T-lymphocytes from symptomatic patients survive through enhanced salvage, but the stimulation induces metabolic cell death, and provide an explanation for the activation-associated lymphocyte death seen in HIV-1+ T-lymphocytes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验