Suppr超能文献

Effects of the chemical denervation on the glial cells of the rat pineal gland: an immunocytochemical study during postnatal development.

作者信息

López-Muñoz F, Boya J

机构信息

Department of Histology, Faculty of Medicine, Complutense University, Madrid, Spain.

出版信息

J Pineal Res. 1995 May;18(4):197-206. doi: 10.1111/j.1600-079x.1995.tb00160.x.

Abstract

We have studied the postnatal evolution of the glial cells in the rat pineal gland after its chemical pre- and perinatal denervation, by the assessment of the immunocytochemical expression of three antigens characteristic of glial cells i.e., vimentin (VIM), glial fibrillary acidic protein (GFAP), and S-100 protein. The neurotoxic agents we applied consisted of 6-hydroxydopamine (6-OHDA) administered during the first 5 postnatal days, and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) injected to pregnant rats in the 15th gestational day. VIM immunoreactivity was detected in pineal glial cells from the first postnatal day, both in denervated and control groups. However, in denervated glands, the maturation process of the glial cells is considerably accelerated, since they appear completely detached of the connective tissue septa at day 15. From day 30, the number of VIM-positive structures progressively increases until adulthood, when a large number of immunoreactive cell processes produces a reticular appearance to the denervated pineal gland. The first GFAP and S-100 protein immunoreactive cells were observed earlier in denervated animals (5th postnatal day for S-100 protein, and 10th postnatal day for GFAP) compared with controls. In the experimentally denervated groups, the population of positive cells, as well as their size and the number of their cell processes, is considerably higher and progressively increased. They were always characteristically located in the proximal half of the gland. From day 45, this region of the gland shows a notable amount of hypertrophic positive cells with thick processes, showing a gliotic aspect.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验