Suppr超能文献

A dynamic intravascular artificial lung.

作者信息

Makarewicz A J, Mockros L F, Anderson R W

机构信息

Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.

出版信息

ASAIO J. 1994 Jul-Sep;40(3):M747-50. doi: 10.1097/00002480-199407000-00099.

Abstract

Intravascular lung assist devices (ILADs) must transfer sufficient amounts of oxygen and carbon dioxide to and from limited surface areas. It has become apparent that passive devices, i.e., those without an active means for enhancing transfer, cannot achieve sufficient transfer within the space available. High speed rotation or oscillation of fiber sheets can increase transfer rates up to 800% over the rates achieved by a stationary device, judiciously configured fiber sheets cause an additional benefit when rotated: reduced resistance to blood flow across the device. The authors have developed a series of device prototypes based on these principles of transfer augmentation and minimization of flow resistance. The prototypes are small enough to fit inside the vena cava, with transfer surface areas ranging from 0.1 m2 to 0.5 m2. Transfer rates of O2 up to 53 ml/min and CO2 up to 51 ml/min and fluxes of 208 ml (min/m2) for O2 and 310 ml (min/m2) for CO2 have been achieved.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验