Isawa T
Higashi-Nagano National Hospital.
Kaku Igaku. 1995 Nov;32(11):1281-8.
Pulmonary nuclear medicine dates back to Knipping and West in the late 1950's but practically starts with the successful production of 131I-MAA by GV Taplin in 1963. Not only is the diagnosis of pulmonary embolism greatly facilitated by using 131I-MAA but also studies of regional lung function have made rapid progress. Radioactive gas and aerosol inhalation have been used to study ventilation distribution in the lungs. Using nuclear medicine technology regional hypoxic vasoconstriction was found to play a great role in regulating regional perfusion distribution in the lungs. Ventilation and perfusion mismatch and match indicate organic lung diseases and pulmonary vascular diseases, respectively. Aerosol deposition patterns in the lungs are helpful in the differential diagnosis of chronic obstructive lung diseases (COPD). Technigas is an ultrafine aerosol which is probably more useful for ventilation studies than conventional aerosols produced by either a jet or an ultrasonic nebulizer. Besides respiratory lung function pulmonary nuclear medicine techniques have made it possible to study nonrespiratory lung function. One is mucociliary clearance mechanisms. They can be studied by using a nonabsorbable aerosol like 99mTc-albumin. Dynamic mucociliary clearance function can be visualized in vivo by radioaerosol inhalation lung cine-scintigraphy. Four abnormal mucociliary transport patterns were discernible in COPD. An objective evaluation of a drug effect on mucociliary transport is feasible. Detailed quantitative analysis of mucociliary clearance is also possible by computer techniques. Pulmonary epithelial permeability is studied following inhalation of 99mTc-DTPA aerosol. Inhaled 99mTc-DTPA disappears from the lungs more rapidly in smokers and patients with interstitial lung diseases. Nuclear medicine has great potential to elucidate other functions of the lung which are still not defined yet by the present knowledge of lung function.
肺核医学可追溯到20世纪50年代末的克尼平(Knipping)和韦斯特(West),但实际上是从1963年GV·塔普林(GV Taplin)成功生产131I - MAA开始的。使用131I - MAA不仅极大地促进了肺栓塞的诊断,而且肺区域功能的研究也取得了快速进展。放射性气体和气溶胶吸入已被用于研究肺部的通气分布。利用核医学技术发现,局部低氧性血管收缩在调节肺部局部灌注分布中起重要作用。通气与灌注不匹配和匹配分别提示器质性肺部疾病和肺血管疾病。肺部气溶胶沉积模式有助于慢性阻塞性肺疾病(COPD)的鉴别诊断。Technigas是一种超细微粒气溶胶,可能比由喷射式或超声雾化器产生的传统气溶胶更有助于通气研究。除了呼吸肺功能外,肺核医学技术还使研究非呼吸肺功能成为可能。其中之一是黏液纤毛清除机制。可以使用如99mTc - 白蛋白这样的不可吸收气溶胶来研究它们。动态黏液纤毛清除功能可通过放射性气溶胶吸入肺闪烁电影成像在体内可视化。在COPD中可识别出四种异常的黏液纤毛运输模式。客观评估药物对黏液纤毛运输的作用是可行的。通过计算机技术也可以对黏液纤毛清除进行详细的定量分析。吸入99mTc - DTPA气溶胶后研究肺上皮通透性。吸烟者和间质性肺疾病患者的肺部吸入的99mTc - DTPA消失得更快。核医学在阐明肺的其他功能方面具有巨大潜力,而目前的肺功能知识尚未对这些功能进行定义。