McMahon R F, Russell-Hunter W D
Biol Bull. 1977 Apr;152(2):182-98. doi: 10.2307/1540558.
Aerial and aquatic rates of oxygen consumption were determined over a range of 5 degrees to 45 degrees C at 5 degrees C intervals for six species of marine littoral snails: including the sublittoral species, Acmaea testudinalis, Mitrella lunata, and Lacuna vincta; and the truly intertidal species, Littorina obtusata, L. littorea, and L. saxatilis. Polarographic oxygen electrodes were used with normally active snails collected from populations on Nobska and Manomet Points, Massachusetts. Three subtidal species, A. testudinalis, Lacuna vincta, and M. lunata, do not display any metabolic adjustment to increasing temperature, with thermal limits reached at 30 degrees to 35 degrees C. Aerial respiration in A. testudinalis is similar to aquatic O2 uptake, but rates average only 36.4% of aquatic rates. The intertidal congeners, Littorina obtusata, L. littorea and L. saxatilis, have varying degrees of aerial and aquatic metabolic regulation with increasing temperature. L. obtusata, a low intertidal snail exposed to air for 15% to 45% of the tidal cycle, displays a respiratory pattern of "passive endurance" to high temperatures both in air and in water. L. littorea, the dominant snail of the midlittoral region, remains active when exposed to air (30% to 75% of the tidal cycle) and has a zone of metabolic regulation between 20 degrees C and 30 degrees C. Over this, the normal ambient temperature range, the Q10 closely approximates one, and nearly equivalent O2 uptake rates occur in air and in water. L. saxatilis from the upper littoral region is exposed to air for 70% to 95% of the tidal cycle and is characterized by reduced aerial and aquatic O2 uptake rates above 25 degrees C, representing a reversible torpor up to its thermal maximum at 44 degrees C. For these six snail species, respiratory responses to increasing temperature are thus directly related to the pattern of vertical distribution in the intertidal environment. Discussion of this relationship stresses that the evolution of other nearterrestrial structures and functions in littoral snails has proceeded in a discontinuous fashion. Despite this, the temperature responses in respiration parallel the functional morphology of the pallial structures and the physiological patterns of response to low oxygen stress, as well as adaptive features of reproduction, larval development, water-control, and nitrogenous excretion.
在5摄氏度至45摄氏度的范围内,以5摄氏度为间隔,测定了六种海洋潮间带蜗牛的空气和水中耗氧率:包括潮下带物种,龟甲滨螺(Acmaea testudinalis)、半月锦螺(Mitrella lunata)和带锦螺(Lacuna vincta);以及真正的潮间带物种,钝拟滨螺(Littorina obtusata)、滨螺(L. littorea)和岩滨螺(L. saxatilis)。使用极谱氧电极对从马萨诸塞州诺布斯卡和马诺梅特角的种群中采集的正常活动的蜗牛进行测定。三种潮下带物种,龟甲滨螺、带锦螺和半月锦螺,对温度升高没有表现出任何代谢调节,在30摄氏度至35摄氏度时达到热极限。龟甲滨螺的空气呼吸与水中氧气摄取相似,但速率平均仅为水中速率的36.4%。潮间带的同属物种,钝拟滨螺、滨螺和岩滨螺,随着温度升高具有不同程度的空气和水中代谢调节。钝拟滨螺是一种低潮间带蜗牛,在潮汐周期的15%至45%时间内暴露于空气中,在空气和水中对高温均表现出“被动耐受”的呼吸模式。滨螺是潮间带中部地区的优势蜗牛,暴露于空气中(潮汐周期的30%至75%)时仍保持活跃,在20摄氏度至30摄氏度之间有一个代谢调节区。在这个正常环境温度范围内,Q10值接近1,在空气和水中的氧气摄取率几乎相等。来自潮间带上部地区的岩滨螺在潮汐周期的70%至95%时间内暴露于空气中,其特征是在25摄氏度以上空气和水中的氧气摄取率降低,在44摄氏度达到热极限之前表现出可逆的蛰伏状态。因此,对于这六种蜗牛物种,对温度升高的呼吸反应与潮间带环境中的垂直分布模式直接相关。对这种关系的讨论强调,潮间带蜗牛其他近陆地结构和功能的进化是以不连续的方式进行的。尽管如此,呼吸中的温度反应与外套膜结构的功能形态、对低氧胁迫的生理反应模式以及繁殖、幼体发育、水分控制和含氮排泄的适应性特征平行。