Giorgi L B, Nixon P J, Merry S A, Joseph D M, Durrant J R, De Las Rivas J, Barber J, Porter G, Klug D R
Department of Biochemistry, Imperial College, London, United Kingdom.
J Biol Chem. 1996 Jan 26;271(4):2093-101. doi: 10.1074/jbc.271.4.2093.
We compare primary charge separation in a photosystem II reaction center preparation isolated from a wild-type (WT) control strain of the cyanobacterium Synechocystis sp. PCC 6803 and from two site-directed mutants of Synechocystis in which residue 130 of the D1 polypeptide has been changed from a glutamine to either a glutamate (mutant D1-Gln130Glu), as in higher plant sequences, or a leucine residue (mutant D1-Gln130Leu). The D1-130 residue is thought to be close to the pheophytin electron acceptor. We show that, when P680 is photoselectively excited, the primary radical pair state P680+Ph- is formed with a time constant of 20-30 ps in the WT and both mutants; this time constant is very similar to that observed in Pisum sativum (a higher plant). We also show that a change in the residue at position D1-130 causes a shift in the peak of the pheophytin Qx-band. Nanosecond and picosecond transient absorption measurements indicate that the quantum yield of radical pair formation (phi RP), associated with the 20-30-ps component, is affected by the identify of the D1-130 residue. We find that, for the isolated photosystem II reaction center particle, phi RP higher plant > phi RP D1-Gln130Glu mutant > phi RP WT > phi RP D1-Gln130Leu mutant. Furthermore, the spectroscopic and quantum yield differences we observe between the WT Synechocystis and higher plant photosystem II, seem to be reversed by mutating the D1-130 ligand so that it is the same as in higher plants. This result is consistent with the previously observed natural regulation of quantum yield in Synechococcus PS II by particular changes in the D1 polypeptide amino acid sequence (Clark, A.K., Hurry, V. M., Gustafsson, P. and Oquist, G. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 11985-11989).
我们比较了从蓝藻集胞藻PCC 6803的野生型(WT)对照菌株以及集胞藻的两个定点突变体中分离出的光系统II反应中心制剂中的初级电荷分离情况。在这两个突变体中,D1多肽的第130位残基已从谷氨酰胺分别变为谷氨酸(突变体D1-Gln130Glu),如同高等植物序列中那样,或者变为亮氨酸残基(突变体D1-Gln130Leu)。D1的第130位残基被认为靠近脱镁叶绿素电子受体。我们发现,当P680被光选择性激发时,野生型和两个突变体中初级自由基对状态P680⁺Ph⁻的形成时间常数为20 - 30皮秒;这个时间常数与在豌豆(一种高等植物)中观察到的非常相似。我们还表明,D1 - 130位残基的变化会导致脱镁叶绿素Qx带峰的移动。纳秒和皮秒瞬态吸收测量表明,与20 - 30皮秒成分相关的自由基对形成量子产率(φRP)受D1 - 130残基的身份影响。我们发现,对于分离的光系统II反应中心颗粒,φRP高等植物 > φRP D1-Gln130Glu突变体 > φRP野生型 > φRP D1-Gln130Leu突变体。此外,我们在野生型集胞藻和高等植物光系统II之间观察到的光谱和量子产率差异,似乎通过将D1 - 130配体突变为与高等植物相同而被逆转。这一结果与先前观察到的通过D1多肽氨基酸序列的特定变化对集球藻PS II量子产率进行自然调节的现象一致(克拉克,A.K.,赫里,V.M.,古斯塔夫松,P.和奥奎斯特,G.(1993年)美国国家科学院院刊90,11985 - 11989)。