Lipping T, Jäntti V, Yli-Hankala A, Hartikainen K
Dept. of Information Technology, Tampere University of Technology, Pori, Finland.
Int J Clin Monit Comput. 1995;12(3):161-7. doi: 10.1007/BF02332690.
In this paper a developed novel algorithm for adaptive segmentation of Burst-suppression EEG is presented. The algorithm can detect bursts, suppression and artifacts, dividing the signal into corresponding segments. A compact representation of burst-suppression EEG, useful in monitoring long-term recordings, is presented. In the second part of the paper the burst-suppression patterns of isoflurane and enflurane anesthesia are compared. It is found that bursts as well as suppression segments are shorter in enflurane anesthesia while the coefficient of variability of the segment lengths is similar for the two anesthetics.
本文提出了一种用于爆发抑制脑电图自适应分割的新型算法。该算法能够检测爆发、抑制和伪迹,将信号划分为相应的段。还提出了一种爆发抑制脑电图的紧凑表示形式,这对于监测长期记录很有用。在本文的第二部分,比较了异氟烷和安氟烷麻醉的爆发抑制模式。研究发现,安氟烷麻醉时的爆发和抑制段较短,而两种麻醉剂的段长度变异系数相似。