Suppr超能文献

甲烷营养型ANME-2a古菌及相关细菌的铁(III)还原富集培养物的组成和代谢潜力

Composition and Metabolic Potential of Fe(III)-Reducing Enrichment Cultures of Methanotrophic ANME-2a Archaea and Associated Bacteria.

作者信息

Slobodkin Alexander I, Ratnikova Nataliya M, Slobodkina Galina B, Klyukina Alexandra A, Chernyh Nikolay A, Merkel Alexander Y

机构信息

Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071 Moscow, Russia.

出版信息

Microorganisms. 2023 Feb 22;11(3):555. doi: 10.3390/microorganisms11030555.

Abstract

The key microbial group involved in anaerobic methane oxidation is anaerobic methanotrophic archaea (ANME). From a terrestrial mud volcano, we enriched a microbial community containing ANME-2a, using methane as an electron donor, Fe(III) oxide (ferrihydrite) as an electron acceptor, and anthraquinone-2,6-disulfonate as an electron shuttle. Ferrihydrite reduction led to the formation of a black, highly magnetic precipitate. A significant relative abundance of ANME-2a in batch cultures was observed over five subsequent transfers. Phylogenetic analysis revealed that, in addition to ANME-2a, two bacterial taxa belonging to uncultured and were constantly present in all enrichments. Metagenome-assembled genomes (MAGs) of ANME-2a contained a complete set of genes for methanogenesis and numerous genes of multiheme c-type cytochromes (MHC), indicating the capability of methanotrophs to transfer electrons to metal oxides or to a bacterial partner. One of the ANME MAGs encoded respiratory arsenate reductase (Arr), suggesting the potential for a direct coupling of methane oxidation with As(V) reduction in the single microorganism. The same MAG also encoded uptake [NiFe] hydrogenase, which is uncommon for ANME-2. The MAG of uncultured contained genes of dissimilatory sulfate reduction, a Wood-Ljungdahl pathway for autotrophic CO fixation, hydrogenases, and 43 MHC. We hypothesize that uncultured is a bacterial partner of ANME-2a, which mediates extracellular electron transfer to Fe(III) oxide.

摘要

参与厌氧甲烷氧化的关键微生物类群是厌氧甲烷氧化古菌(ANME)。我们从陆地泥火山中富集了一个包含ANME-2a的微生物群落,使用甲烷作为电子供体,氧化铁(水铁矿)作为电子受体,蒽醌-2,6-二磺酸盐作为电子穿梭体。水铁矿还原导致形成黑色的高磁性沉淀。在随后的五次传代培养中,分批培养物中观察到ANME-2a的相对丰度显著。系统发育分析表明,除了ANME-2a之外,两个属于未培养类群的细菌分类单元在所有富集培养物中均持续存在。ANME-2a的宏基因组组装基因组(MAG)包含一套完整的甲烷生成基因和许多多血红素c型细胞色素(MHC)基因,表明甲烷营养菌能够将电子转移到金属氧化物或细菌伙伴。其中一个ANME MAG编码呼吸性砷酸盐还原酶(Arr),表明单个微生物中甲烷氧化与As(V)还原可能直接偶联。同一个MAG还编码摄取型[NiFe]氢化酶,这在ANME-2中并不常见。未培养类群的MAG包含异化硫酸盐还原基因、用于自养CO固定的伍德-Ljungdahl途径、氢化酶和43个MHC。我们假设未培养类群是ANME-2a的细菌伙伴,它介导细胞外电子向氧化铁的转移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ab8/10052568/8becdb6455c4/microorganisms-11-00555-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验