Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
BMC Genomics. 2021 Jun 25;22(1):475. doi: 10.1186/s12864-021-07809-6.
Halotolerant Fe (III) oxide reducers affiliated in the family Desulfuromonadaceae are ubiquitous and drive the carbon, nitrogen, sulfur and metal cycles in marine subsurface sediment. Due to their possible application in bioremediation and bioelectrochemical engineering, some of phylogenetically close Desulfuromonas spp. strains have been isolated through enrichment with crystalline Fe (III) oxide and anode. The strains isolated using electron acceptors with distinct redox potentials may have different abilities, for instance, of extracellular electron transport, surface recognition and colonization. The objective of this study was to identify the different genomic signatures between the crystalline Fe (III) oxide-stimulated strain AOP6 and the anode-stimulated strains WTL and DDH964 by comparative genome analysis.
The AOP6 genome possessed the flagellar biosynthesis gene cluster, as well as diverse and abundant genes involved in chemotaxis sensory systems and c-type cytochromes capable of reduction of electron acceptors with low redox potentials. The WTL and DDH964 genomes lacked the flagellar biosynthesis cluster and exhibited a massive expansion of transposable gene elements that might mediate genome rearrangement, while they were deficient in some of the chemotaxis and cytochrome genes and included the genes for oxygen resistance.
Our results revealed the genomic signatures distinctive for the ferric iron oxide- and anode-stimulated Desulfuromonas spp. strains. These findings highlighted the different metabolic abilities, such as extracellular electron transfer and environmental stress resistance, of these phylogenetically close bacterial strains, casting light on genome evolution of the subsurface Fe (III) oxide reducers.
在脱硫单胞菌科中,耐盐氧化铁还原菌普遍存在,它们驱动着海洋底层沉积物中的碳、氮、硫和金属循环。由于它们在生物修复和生物电化学工程中的潜在应用,一些亲缘关系密切的脱硫单胞菌属菌株已经通过结晶氧化铁和阳极的富集而被分离出来。使用具有不同氧化还原电位的电子受体分离出的菌株可能具有不同的能力,例如,细胞外电子传递、表面识别和定殖。本研究的目的是通过比较基因组分析,确定结晶氧化铁刺激的菌株 AOP6 与阳极刺激的菌株 WTL 和 DDH964 之间的不同基因组特征。
AOP6 基因组具有鞭毛生物合成基因簇,以及多样化和丰富的与趋化感应系统和 c 型细胞色素有关的基因,这些基因能够还原氧化还原电位较低的电子受体。WTL 和 DDH964 基因组缺乏鞭毛生物合成簇,并且表现出大量转座基因元件的扩张,这些元件可能介导基因组重排,而它们在一些趋化和细胞色素基因中存在缺陷,并包括耐氧基因。
我们的研究结果揭示了氧化铁和阳极刺激的脱硫单胞菌属菌株的独特基因组特征。这些发现突出了这些亲缘关系密切的细菌菌株的不同代谢能力,如细胞外电子传递和环境应激抗性,为地下氧化铁还原菌的基因组进化提供了线索。