Suppr超能文献

Effect of dynamic loading methods on cement film thickness in vitro.

作者信息

Yu Z, Strutz J M, Kipnis V, White S N

机构信息

Department of Restorative Dentistry/Biomaterials, USC School of Dentistry, Los Angeles, CA 90089-0641, USA.

出版信息

J Prosthodont. 1995 Dec;4(4):251-5. doi: 10.1111/j.1532-849x.1995.tb00351.x.

Abstract

PURPOSE

Reduced cement flm thicknesses can improve crown seating and decrease marginal discrepancies. Improved marginal adaptation has the potential to reduce plaque accumulation, periodontal disease, and cement dissolution. Studies have indicated that dynamic seating methods can reduce seating discrepancies associated with zinc phosphate and resin cements. However, other types of cements and other dynamic techniques have not yet been studied or compared, nor has the mechanism for improved seating been fully explained. Therefore, the purpose of this study was to investigate the effect of a variety of loading methods on the film thicknesses of current types of crown and fixed partial denture cements compressed between glass plates.

MATERIALS AND METHODS

This study investigated the effect of three dynamic loading methods on film thickness of six representative fixed prosthodontic cements. These included zinc phosphate, resin-modified glass ionomer, encapsulated glass ionomer, adhesive composite resin, composite resin, and polycarboxylate. The method was derived from American Dental Association specifications for cement film thickness. In control groups, the cements were placed between two glass glass plates and statically loaded with a 15-kg weight. The test groups were initially similarly loaded, and then for 30 seconds further subjected to simulated repeated patient opening and closing, vibrations from an electromallet, or an ultrasonic device.

RESULTS

Mean film thicknesses ranged from 7.4 micrometers for polycarboxylate / ultrasound up to 40.3 micrometers for composite resin / static. Two-way analysis of variance revealed that the effects of material type and cementation method and their interaction all significantly affected film thickness (P < .0001). Multiple range analysis showed that dynamic methods were generally superior to static loading and that the ultrasonic method was the best overall.

CONCLUSIONS

The different dynamic loading methods all significantly decreased cement film thicknesses between glass plates. The ultrasonic method was the most effective. The type of cement used also influenced film thickness. Composite resins were more affected than other materials.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验