Barretto O C, Nonoyama K, Deutsch A D, Ramos J L
Institute of Psychiatry LIM-23, University of São Paulo Medical School, Brazil.
J Perinat Med. 1995;23(5):365-9. doi: 10.1515/jpme.1995.23.5.365.
As the available hemoglobin A1 at birth ranges from 20 to 30% a possible mechanism to favor oxygen release to the tissues could be a decrease of hemoglobin A1 affinity to oxygen. This may be accomplished by an increase in blood pH soon after birth and by an elevation in red cell 2,3-diphosphoglycerate (2,3-DPG). This hypothesis is supported by Valleri and Hirsch, who described a rapid 2,3-DPG recovery of transfused depleted 2,3-DPG red cells. That being so, we carried out this current study by assaying the 2,3-DPG of cord blood from 22 newborns and at 6, 24 and 72 hours after birth, as well as those enzymes assumed to be envolved in the 2,3-DPG levels regulation. 2,3-DPG (nmoles g-1 Hb) demonstrated the following values: cord blood: 9,770 +/- 1,026; 6h: 12,773 +/- 1,726; 72 h: 11,990 +/- 728, unveiling a distinct behavior of a sharp increase of 30% by the sixth hour. This confirmed our hypothesis. Regarding the metabolic mechanisms which can account for the 2,3-DPG increase, besides the rise of blood pH, we detected a significant decrease of the 2,3-DPG phosphatase activity, which might diminish the 2,3-DPG breakdown.