Suppr超能文献

一种用于前瞻性研究的基于树的分析方法。

A tree-based method of analysis for prospective studies.

作者信息

Zhang H, Holford T, Bracken M B

机构信息

Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.

出版信息

Stat Med. 1996 Jan 15;15(1):37-49. doi: 10.1002/(SICI)1097-0258(19960115)15:1<37::AID-SIM144>3.0.CO;2-0.

Abstract

Prospective studies often involve rare events as study outcomes, and a primary concern is to identify risk factors and risk groups associated with the outcomes. We discuss practical solutions to risk factor analyses in prospective studies and address strategies to determine tree structures, to estimate relative risks, and to manage missing data in connection with some important epidemiologic problems. Some of the basic ideas for our strategies follow from work of Breiman, Friedman, Olshen, and Stone, although we propose extensions to their methods to resolve some practical problems that arise in implementation of these methods in epidemiologic studies. To illustrate these ideas, we analyse low birthweight associated risk factors with use of a data set from the Yale Pregnancy Outcome Study.

摘要

前瞻性研究常常将罕见事件作为研究结果,而一个主要关注点是识别与这些结果相关的风险因素和风险群体。我们讨论了前瞻性研究中风险因素分析的实际解决方案,并阐述了确定树状结构、估计相对风险以及处理与一些重要流行病学问题相关的缺失数据的策略。我们策略的一些基本思想源自布莱曼、弗里德曼、奥尔申和斯通的研究成果,不过我们对他们的方法进行了扩展,以解决在流行病学研究中实施这些方法时出现的一些实际问题。为了阐明这些观点,我们使用耶鲁妊娠结局研究的数据集分析了与低出生体重相关的风险因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验