Suppr超能文献

Studies on inhibition of mu and delta opioid receptor binding by dithiothreitol and N-ethylmaleimide. His223 is critical for mu opioid receptor binding and inactivation by N-ethylmaleimide.

作者信息

Shahrestanifar M, Wang W W, Howells R D

机构信息

Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, Graduate School of Biomedical Sciences and New Jersey Medical School, Newark, New Jersey 07103, USA.

出版信息

J Biol Chem. 1996 Mar 8;271(10):5505-12. doi: 10.1074/jbc.271.10.5505.

Abstract

The sensitivity of mu and delta receptor binding to dithiothreitol and N-ethylmaleimide was examined to probe receptor structure and function. Binding to both receptor types was inhibited by dithiothreitol (IC50 values = 250 mM), suggesting the presence of inaccessible but critical disulfide linkages. mu receptor binding was inhibited with more rapid kinetics and at lower N-ethylmaleimide concentrations than delta receptor binding. Ligand protection against N-ethylmaleimide inactivation suggested that alkylation was occurring within, or in the vicinity of, the receptor binding pocket. Sodium ions dramatically affected the IC50 of N-ethylmaleimide toward both receptor types in a ligand-dependent manner. Analysis of receptor chimeras suggested that the site of N-ethylmaleimide alkylation on the mu receptor was between transmembrane domains 3 and 5. Substitution of cysteines between transmembrane domains 3 and 5 and elsewhere had no effect on receptor binding or sensitivity toward N-ethylmaleimide. Serine substitution of His223 in the putative second extracellular loop linking transmembrane domains 4 and 5 protected against N-ethylmaleimide inactivation. The H223S substitution decreased the affinity of bremazocine 25-fold, highlighting the importance of this residue for the formation of the high affinity bremazocine binding site in the mu opioid receptor.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验