Brandes H K, Hartman F C, Lu T Y, Larimer F W
Protein Engineering Program, Biology Division, Oak Ridge National Laboratory, Tennessee 37831, USA.
J Biol Chem. 1996 Mar 15;271(11):6490-6. doi: 10.1074/jbc.271.11.6490.
Phosphoribulokinase (PRK), unique to photosynthetic organisms, is regulated in higher plants by thioredoxin-mediated thiol-disulfide exchange in a light-dependent manner. Prior attempts to overexpress the higher plant PRK gene in Escherichia coli for structure-function studies have been hampered by sensitivity of the recombinant protein to proteolysis as well as toxic effects of the protein on the host. To overcome these impediments, we have spliced the spinach PRK coding sequence immediately downstream from the AOX1 (alcohol oxidase) promoter of Pichia pastoris, displacing the chromosomal AOX1 gene. The PRK gene is now expressed, in response to methanol, at 4-6% of total soluble protein, without significant in vivo degradation of the recombinant enzyme. This recombinant spinach PRK is purified to homogeneity by successive anion-exchange and dye-affinity chromatography and is shown to be electrophoretically and kinetically indistinguishable from the authentic spinach counterpart. Site-specific replacement of all of PRK's cysteinyl residues (both individually and in combination) demonstrates a modest catalytically facilitative role for Cys-55 (one of the regulatory residues) and the lack of any catalytic role for Cys-16 (the other regulatory residue), Cys-244, or Cys-250. Mutants with seryl substitutions at position 55 display non-hyperbolic kinetics relative to the concentration of ribulose 5-phosphate. Sulfate restores hyperbolic kinetics and enhances kinase activity, presumably reflecting conformational differences between the position 55 mutants and wild-type enzyme. Catalytic competence of the C16S-C55S double mutant proves that mere loss of free sulfhydryl groups by oxidative regulation cannot account entirely for the accompanying total inactivation.
磷酸核酮糖激酶(PRK)是光合生物所特有的,在高等植物中通过硫氧还蛋白介导的硫醇 - 二硫键交换以光依赖的方式进行调节。先前为了进行结构 - 功能研究而在大肠杆菌中过表达高等植物PRK基因的尝试受到了重组蛋白对蛋白水解的敏感性以及该蛋白对宿主的毒性作用的阻碍。为了克服这些障碍,我们将菠菜PRK编码序列拼接在巴斯德毕赤酵母AOX1(醇氧化酶)启动子的紧下游,取代了染色体上的AOX1基因。现在,PRK基因在甲醇诱导下表达,表达量占总可溶性蛋白的4 - 6%,重组酶在体内没有明显降解。这种重组菠菜PRK通过连续的阴离子交换和染料亲和层析纯化至同质,并且在电泳和动力学上与天然菠菜PRK没有区别。对PRK所有半胱氨酸残基进行位点特异性替换(单独和组合替换)表明,Cys - 55(调节残基之一)具有适度的催化促进作用,而Cys - 16(另一个调节残基)、Cys - 244或Cys - 250没有任何催化作用。在位置55处被丝氨酸取代的突变体相对于5 - 磷酸核酮糖的浓度表现出非双曲线动力学。硫酸盐可恢复双曲线动力学并增强激酶活性,推测这反映了位置55突变体与野生型酶之间的构象差异。C16S - C55S双突变体的催化活性证明,仅仅通过氧化调节失去游离巯基并不能完全解释随之而来的完全失活。