Suppr超能文献

对经UVA照射的抗坏血酸糖化晶状体蛋白所产生的活性氧进行定量分析。

Quantitation of the reactive oxygen species generated by the UVA irradiation of ascorbic acid-glycated lens proteins.

作者信息

Linetsky M, Ortwerth B J

机构信息

Mason Institute of Ophthalmology, University of Missouri, Columbia 65212, USA.

出版信息

Photochem Photobiol. 1996 May;63(5):649-55. doi: 10.1111/j.1751-1097.1996.tb05669.x.

Abstract

The oxidation products of ascorbic acid rapidly glycate proteins and produce protein-bound, advanced glycation endproducts. These endproducts can absorb UVA light and cause the photolytic oxidation of proteins (Ortwerth, Linetsky and Olesen, Photochem. Photobiol. 62, 454-463, 1995), which is mediated by the formation of reactive oxygen species. A dialyzed preparation of calf lens proteins, which had been incubated for 4 weeks with 20 mM ascorbic acid in air, was irradiated for 1 h with 200 mW/cm2 of absorbed UVA light (gamma > 338 nm), and the concentration of individual oxygen free radicals was measured. Superoxide anion attained a level of 76 microM as determined by the superoxide dismutase (SOD)-dependent increase in hydrogen peroxide formation and of 52 microM by the SOD-inhibitable reduction of cytochrome c. Hydrogen peroxide formation increased linearly to 81 microM after 1 h. Neither superoxide anion nor hydrogen peroxide, however, could account for the UVA photolysis of Trp and His seen in this system. Singlet oxygen levels approached 1.0 mM as measured by the oxidation of histidine, which was consistent with singlet oxygen measurements by the bleaching of N,N-dimethyl-4-nitrosoaniline. High concentrations of sodium azide, a known singlet oxygen quencher, inhibited the photolytic destruction of both His and Trp. Little or no protein damage could be ascribed to hydroxyl radical based upon quenching experiments with added mannitol. Therefore, superoxide anion and H2O2 were generated by the UVA irradiation of ascorbate advanced glycation endproducts, however, the major reactive oxygen species formed was singlet oxygen.

摘要

抗坏血酸的氧化产物能迅速使蛋白质糖基化,并产生与蛋白质结合的晚期糖基化终产物。这些终产物可吸收紫外线A(UVA)并导致蛋白质的光解氧化(奥特沃思、利涅茨基和奥莱森,《光化学与光生物学》62卷,454 - 463页,1995年),这是由活性氧的形成介导的。将小牛晶状体蛋白的透析制剂在空气中与20 mM抗坏血酸孵育4周后,用200 mW/cm²的吸收UVA光(γ>338 nm)照射1小时,并测量各个氧自由基的浓度。通过超氧化物歧化酶(SOD)依赖性的过氧化氢生成增加测定,超氧阴离子达到76 μM水平,通过SOD抑制的细胞色素c还原测定为52 μM。1小时后过氧化氢生成线性增加至81 μM。然而,在该系统中观察到的色氨酸(Trp)和组氨酸(His)的UVA光解,超氧阴离子和过氧化氢都无法解释。通过组氨酸氧化测量,单线态氧水平接近1.0 mM,这与通过N,N - 二甲基 - 4 - 亚硝基苯胺漂白进行的单线态氧测量结果一致。高浓度的叠氮化钠是一种已知的单线态氧猝灭剂,可抑制His和Trp的光解破坏。根据添加甘露醇的猝灭实验,几乎没有或没有蛋白质损伤可归因于羟基自由基。因此,超氧阴离子和H₂O₂是由抗坏血酸晚期糖基化终产物的UVA照射产生的,然而,形成的主要活性氧是单线态氧。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验