Suppr超能文献

针对混杂因素调整生存曲线:综述与一种新方法。

Adjusting survival curves for confounders: a review and a new method.

作者信息

Nieto F J, Coresh J

机构信息

Department of Epidemiology, School of Hygiene and Public Health, John Hopkins University, Baltimore, MD 21205, USA.

出版信息

Am J Epidemiol. 1996 May 15;143(10):1059-68. doi: 10.1093/oxfordjournals.aje.a008670.

Abstract

When reporting results from survival analysis, investigators often present crude Kaplan-Meier survival curves and adjusted relative hazards from the Cox proportional hazards model. Occasionally, the investigators will also provide a graphical representation of adjusted survival curves based on regression estimates and the average covariate values in the study groups. In this paper, the authors review the limitations of this approach and examine alternative approaches to obtaining adjusted survival curves that have been proposed. Furthermore, a new method to obtain multivariate adjusted survival curves is described. This method is based on direct adjustment of the observed conditional probability of survival at the time of each event. When an unexposed group is used as a standard for adjusting an exposed group, the survival curve in the exposed group is adjusted to the covariate distribution among the unexposed at the time of the event. This method has the advantage over the average covariate method of allowing for the possibility that the adjusted survival curves differ in shape. The method can handle multiple fixed or time-dependent categorical covariates as well as left truncated data, and it allows for estimation of confidence intervals. The authors have written a macro in SAS language that produces the adjusted survival estimates and graphs. This macro is available on request and can be downloaded through the World Wide Web.

摘要

在报告生存分析结果时,研究者通常会呈现粗的Kaplan-Meier生存曲线以及来自Cox比例风险模型的调整后相对风险。偶尔,研究者还会基于回归估计和研究组中的平均协变量值提供调整后生存曲线的图形表示。在本文中,作者回顾了这种方法的局限性,并研究了已提出的获得调整后生存曲线的替代方法。此外,还描述了一种获得多变量调整后生存曲线的新方法。该方法基于对每个事件发生时观察到的生存条件概率进行直接调整。当将未暴露组用作调整暴露组的标准时,暴露组的生存曲线会根据事件发生时未暴露组中的协变量分布进行调整。该方法相对于平均协变量方法的优势在于,它允许调整后的生存曲线在形状上有所不同。该方法可以处理多个固定或随时间变化的分类协变量以及左截断数据,并且可以估计置信区间。作者用SAS语言编写了一个宏,用于生成调整后的生存估计值和图形。该宏可应要求提供,并且可以通过万维网下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验