Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia.
Institut für Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule Hannover, Carl-Neuberg Strasse 1, 30625 Hannover, Germany ; Laboratory of Genetic, Endocrine and Metabolic Diseases, Department of Neurology, Radboud University Medical Center, Geert Grooteplein Zuid 10 (route 830), Nijmegen, The Netherlands.
Comput Struct Biotechnol J. 2014 Jun 11;10(16):23-32. doi: 10.1016/j.csbj.2014.05.003. eCollection 2014 Jun.
The proteomes of eukaryotes, bacteria and archaea are highly diverse due, in part, to the complex post-translational modification of protein glycosylation. The diversity of glycosylation in eukaryotes is reliant on nucleotide sugar transporters to translocate specific nucleotide sugars that are synthesised in the cytosol and nucleus, into the endoplasmic reticulum and Golgi apparatus where glycosylation reactions occur. Thirty years of research utilising multidisciplinary approaches has contributed to our current understanding of NST function and structure. In this review, the structure and function, with reference to various disease states, of several NSTs including the UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine, GDP-fucose, UDP-N-acetylglucosamine/UDP-glucose/GDP-mannose and CMP-sialic acid transporters will be described. Little is known regarding the exact structure of NSTs due to difficulties associated with crystallising membrane proteins. To date, no three-dimensional structure of any NST has been elucidated. What is known is based on computer predictions, mutagenesis experiments, epitope-tagging studies, in-vitro assays and phylogenetic analysis. In this regard the best-characterised NST to date is the CMP-sialic acid transporter (CST). Therefore in this review we will provide the current state-of-play with respect to the structure-function relationship of the (CST). In particular we have summarised work performed by a number groups detailing the affect of various mutations on CST transport activity, efficiency, and substrate specificity.
真核生物、细菌和古菌的蛋白质组由于蛋白质糖基化的复杂翻译后修饰而具有高度多样性。真核生物中糖基化的多样性依赖于核苷酸糖转运蛋白,将在细胞质和核中合成的特定核苷酸糖转运到内质网和高尔基体中,在那里发生糖基化反应。三十年来,利用多学科方法的研究促进了我们对 NST 功能和结构的当前理解。在这篇综述中,将描述几种 NST 的结构和功能,包括 UDP-半乳糖、UDP-N-乙酰葡萄糖胺、UDP-N-乙酰半乳糖胺、GDP-岩藻糖、UDP-N-乙酰葡萄糖胺/UDP-葡萄糖/GDP-甘露糖和 CMP-唾液酸转运蛋白,并参考各种疾病状态。由于与膜蛋白结晶相关的困难,人们对 NST 的精确结构知之甚少。迄今为止,尚未阐明任何 NST 的三维结构。目前所知的是基于计算机预测、突变实验、表位标记研究、体外测定和系统发育分析。在这方面,迄今为止研究最充分的 NST 是 CMP-唾液酸转运蛋白(CST)。因此,在这篇综述中,我们将提供关于(CST)结构-功能关系的最新情况。特别是,我们总结了许多小组的工作,详细说明了各种突变对 CST 转运活性、效率和底物特异性的影响。