Deng H, Chan A W, Bagdassarian C K, Estupiñán B, Ganem B, Callender R H, Schramm V L
Department of Physics, City College of the City University of New York, New York 10031, USA.
Biochemistry. 1996 May 14;35(19):6037-47. doi: 10.1021/bi9526544.
The transition state for hydrolysis of the N-ribosidic bond of inosine by nucleoside hydrolase has oxocarbenium character and a protonated leaving group hypoxanthine with an sp2-hybridized C1' of the ribosyl [Horenstein, B. A., Parkin, D. W., Estupinan, B., & Schramm, V. L. (1991) Biochemistry 30, 10788-10795]. These features are incorporated into N-(p-nitrophenyl)-D-riboamidrazone, a transition state analogue which binds with a dissociation constant of 2 nM [Boutellier, M., Horenstein, B. A., Semenyaka, A., Schramm, V. L., & Ganem, B. (1994) Biochemistry 33, 3994-4000]. Resonance Raman and ultraviolet-visible absorbance spectroscopy has established that the inhibitor binds as the neutral, zwitterionic species. The enzyme stabilizes a specific resonance state characterized by the quinonoid form of the p-nitrophenyl group with evidence for ion pairing at the nitro group. Incorporation of 15N into a specific position of the amidrazone reveals that the exo-ribosyl nitrogen bonded to the C1' position carries the proton while that bonded to the p-nitrophenyl carbon is unprotonated. This tautomer carries a distributed positive charge centered at the position analogous to C1' of the ribosyl group at the transition state. The molecular electrostatic potentials for the substrate inosine, the transition state, and the transition state inhibitor are compared at the van der Waals surface of the molecules. The tautomer of the inhibitor bound to the enzyme bears a striking electrostatic resemblance to the transition state determined by kinetic isotope effect analysis. The spectral and resonance Raman properties of free and enzyme-bound inhibitor have permitted tautomeric assignment of these species and establish that the enzyme substantially changes the electronic distribution of the bound inhibitor toward that of the enzyme-stabilized transition state.
核苷水解酶催化肌苷N-核糖苷键水解的过渡态具有氧鎓离子特征,离去基团次黄嘌呤质子化,核糖基的C1'为sp2杂化[霍伦斯坦,B.A.,帕金,D.W.,埃斯图皮南,B.,&施拉姆,V.L.(1991)《生物化学》30,10788 - 10795]。这些特征被纳入N-(对硝基苯基)-D-核糖脒腙,一种过渡态类似物,其解离常数为2 nM[布泰利耶,M.,霍伦斯坦,B.A.,塞梅尼亚卡,A.,施拉姆,V.L.,&加内姆,B.(1994)《生物化学》33,3994 - 4000]。共振拉曼光谱和紫外可见吸收光谱表明该抑制剂以中性两性离子形式结合。该酶稳定了一种特定的共振态,其特征是对硝基苯基的醌式结构,且在硝基处有离子对形成的证据。将15N掺入脒腙的特定位置表明,与C1'位置相连的外核糖基氮携带质子,而与对硝基苯基碳相连的氮未质子化。这种互变异构体带有一个分布的正电荷,其中心位于与过渡态核糖基C1'位置类似的位置。在分子的范德华表面比较了底物肌苷、过渡态和过渡态抑制剂的分子静电势。与酶结合的抑制剂互变异构体在静电方面与通过动力学同位素效应分析确定的过渡态有显著相似之处。游离和与酶结合的抑制剂的光谱和共振拉曼性质使得能够对这些物种进行互变异构体归属,并确定酶使结合抑制剂的电子分布朝着酶稳定的过渡态的电子分布发生了实质性变化。