Suppr超能文献

核苷水解酶过渡态的电子性质。抑制剂设计蓝图。

Electronic nature of the transition state for nucleoside hydrolase. A blueprint for inhibitor design.

作者信息

Horenstein B A, Schramm V L

机构信息

Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461.

出版信息

Biochemistry. 1993 Jul 20;32(28):7089-97. doi: 10.1021/bi00079a004.

Abstract

A new approach to understanding transition-state structure is presented which involves the sequential application of experimental and computational methods. A family of experimentally determined kinetic isotope effects is fit simultaneously in a vibrational analysis to provide a geometric model of the transition state. The electrostatic potential surface of the geometric model is defined by molecular orbital calculations to detail the electronic nature of the transition state. The method provides both geometric and charge information for the enzyme-stabilized transition state. Electrostatic potential surface calculations were applied to the N-glycohydrolase reaction catalyzed by nucleoside hydrolase from the trypanosome Crithidia fasciculata. A geometric model of the transition-state structure for the enzymatic hydrolysis of inosine by nucleoside hydrolase has been established by the analysis of a family of kinetic isotope effects [Horenstein, B.A., Parkin, D.W., Estupinan, B., & Schramm, V.L. (1991) Biochemistry 30, 10788]. The transition state has substantial oxycarbonium ion character, but the results of electrostatic potential calculations indicate that the transition-state charge is distributed over the ribosyl ring rather than existing as a localized C+-O<==>C = O+ resonance pair. The electrostatic potential surfaces of the substrate and enzyme-bound products differ considerably from that of the transition state. At the transition state both hypoxanthine and ribose demonstrate regions of positive charge. The positive charge on the ribosyl oxycarbonium ion is moderated by association with an enzyme-directed water nucleophile. The enzyme-bound products contain adjacent areas of negative charge. The electrostatic potential surfaces provide novel insights into transition-state structure and the forces causing release of products.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

本文提出了一种理解过渡态结构的新方法,该方法涉及实验方法和计算方法的顺序应用。通过振动分析同时拟合一系列实验测定的动力学同位素效应,以提供过渡态的几何模型。通过分子轨道计算定义几何模型的静电势面,以详细描述过渡态的电子性质。该方法为酶稳定的过渡态提供了几何和电荷信息。静电势面计算应用于由锥虫克氏锥虫核苷水解酶催化的N-糖苷水解酶反应。通过对一系列动力学同位素效应的分析,建立了核苷水解酶催化肌苷酶促水解的过渡态结构几何模型[霍伦斯坦,B.A.,帕金,D.W.,埃斯图皮南,B.,&施拉姆,V.L.(1991)生物化学30,10788]。过渡态具有大量的氧鎓离子特征,但静电势计算结果表明,过渡态电荷分布在核糖环上,而不是作为局部C+-O<==>C = O+共振对存在。底物和酶结合产物的静电势面与过渡态有很大不同。在过渡态,次黄嘌呤和核糖都显示出正电荷区域。核糖氧鎓离子上的正电荷通过与酶导向的水亲核试剂结合而得到缓和。酶结合产物含有相邻的负电荷区域。静电势面为过渡态结构和导致产物释放的力提供了新的见解。(摘要截短于250字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验