Davis S C, Sui Z, Peterson J A, Ortiz de Montellano P R
Department of Pharmaceutical Chemistry, School of Pharmacy, and Liver Center, University of California, San Francisco 94143-0446, USA.
Arch Biochem Biophys. 1996 Apr 1;328(1):35-42. doi: 10.1006/abbi.1996.0139.
Cytochrome P450 enzymes oxidize aldehydes either to the corresponding acid or, via a decarboxylation mechanism, to an olefin one carbon shorter than the parent substrate. To explore the factors that control partitioning between these two pathways, we have examined the cytochrome P450BM-3 (CYP102)-catalyzed oxidation of fatty acids with a terminal aldehyde group. P450BM-3 oxidizes 18-oxooctadecanoic, 16-oxohexadecanoic, 14-oxotetradecanoic, and 12-oxododecanoic acids exclusively to the corresponding alpha,omega-diacids. The rates of these oxidations decrease in the order C16 > C18 approximately = C14 > C12. No kinetic isotope effect is observed nor is the catalytic outcome altered when the aldehyde hydrogen is replaced by a deuterium in 16-oxohexadecanoic acid. The only product observed with 16-oxohexadecanoic acid is the diacid even when a 13,14-double bond or 15-methyl groups, substitutions that should stabilize the proposed radical intermediate generated by decarboxylation, are present. The oxidation of 16-oxohexadecanoic acid is not supported by H2O2. The results demonstrate that aldehyde oxidation by cytochrome P450BM-3 is insensitive to changes in substrate structure expected to stabilize the transition state for decarboxylation. Decarboxylation, in contrast to the oxidation of aldehydes to acids, depends on specific substrate-protein interactions and is enzyme-specific.
细胞色素P450酶可将醛氧化为相应的酸,或者通过脱羧机制将其氧化为比母体底物少一个碳原子的烯烃。为了探究控制这两条途径之间分配的因素,我们研究了细胞色素P450BM-3(CYP102)催化的带有末端醛基的脂肪酸氧化反应。P450BM-3将18-氧代十八烷酸、16-氧代十六烷酸、14-氧代十四烷酸和12-氧代十二烷酸仅氧化为相应的α,ω-二酸。这些氧化反应的速率顺序为C16 > C18 ≈ C14 > C12。当16-氧代十六烷酸中的醛氢被氘取代时,未观察到动力学同位素效应,催化结果也未改变。即使存在13,14-双键或15-甲基(这些取代基应能稳定通过脱羧生成的自由基中间体),16-氧代十六烷酸唯一观察到的产物仍是二酸。16-氧代十六烷酸的氧化反应不受H2O2的支持。结果表明,细胞色素P450BM-3催化的醛氧化对预期能稳定脱羧过渡态的底物结构变化不敏感。与醛氧化为酸相反,脱羧反应取决于特定的底物-蛋白质相互作用,且具有酶特异性。