Suppr超能文献

酵母染色体复制起始时间程序的分析。

Analysis of the temporal program of replication initiation in yeast chromosomes.

作者信息

Friedman K L, Raghuraman M K, Fangman W L, Brewer B J

机构信息

Department of Genetics, University of Washington, Seattle 98195-7360, USA.

出版信息

J Cell Sci Suppl. 1995;19:51-8. doi: 10.1242/jcs.1995.supplement_19.7.

Abstract

The multiple origins of eukaryotic chromosomes vary in the time of their initiation during S phase. In the chromosomes of Saccharomyces cerevisiae the presence of a functional telomere causes nearby origins to delay initiation until the second half of S phase. The key feature of telomeres that causes the replication delay is the telomeric sequence (C(1-3)A/G(1-3)T) itself and not the proximity of the origin to a DNA end. A second group of late replicating origins has been found at an internal position on chromosome XIV. Four origins, spanning approximately 140 kb, initiate replication in the second half of S phase. At least two of these internal origins maintain their late replication time on circular plasmids. Each of these origins can be separated into two functional elements: those sequences that provide origin function and those that impose late activation. Because the assay for determining replication time is costly and laborious, it has not been possible to analyze in detail these 'late' elements. We report here the development of two new assays for determining replication time. The first exploits the expression of the Escherichia coli dam methylase in yeast and the characteristic period of hemimethylation that transiently follows the passage of a replication fork. The second uses quantitative hybridization to detect two-fold differences in the amount of specific restriction fragments as a function of progress through S phase. The novel aspect of this assay is the creation in vivo of a non-replicating DNA sequence by site-specific pop-out recombination. This non-replicating fragment acts as an internal control for copy number within and between samples. Both of these techniques are rapid and much less costly than the more conventional density transfer experiments that require CsCl gradients to detect replicated DNA. With these techniques it should be possible to identify the sequences responsible for late initiation, to search for other late replicating regions in the genome, and to begin to analyze the effect that altering the temporal program has on chromosome function.

摘要

真核染色体的多个起源在S期起始时间上各不相同。在酿酒酵母的染色体中,功能性端粒的存在会导致附近的起源延迟起始,直到S期后半段。导致复制延迟的端粒关键特征是端粒序列(C(1 - 3)A/G(1 - 3)T)本身,而非起源与DNA末端的接近程度。在第十四号染色体的内部位置发现了另一组晚期复制起源。四个起源,跨度约140 kb,在S期后半段起始复制。这些内部起源中至少有两个在环状质粒上保持其晚期复制时间。这些起源中的每一个都可分为两个功能元件:提供起源功能的序列和施加晚期激活的序列。由于确定复制时间的检测成本高且费力,因此无法详细分析这些“晚期”元件。我们在此报告两种用于确定复制时间的新检测方法的开发。第一种方法利用大肠杆菌dam甲基化酶在酵母中的表达以及复制叉通过后短暂出现的半甲基化特征时期。第二种方法使用定量杂交来检测特定限制性片段数量的两倍差异,作为S期进展的函数。该检测方法的新颖之处在于通过位点特异性弹出重组在体内创建一个非复制性DNA序列。这个非复制性片段作为样品内部和样品之间拷贝数的内部对照。这两种技术都很快速,且比需要CsCl梯度来检测复制DNA的更传统的密度转移实验成本低得多。利用这些技术,应该有可能识别负责晚期起始的序列,在基因组中寻找其他晚期复制区域,并开始分析改变时间程序对染色体功能的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验