Myers C E, Ermita B R, Harris K, Hasselmo M, Solomon P, Gluck M A
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA.
Neurobiol Learn Mem. 1996 Jul;66(1):51-66. doi: 10.1006/nlme.1996.0043.
A previous neurocomputational model of corticohippocampal interaction (Gluck & Myers, 1993) can provide a framework for examining the behavioral effects of septohippocampal modulation during classical conditioning. The model assumes that the hippocampal region is necessary for forming new stimulus representations during learning, but not for the formation of simple associations. This paper considers how septohippocampal interaction could affect this function. The septal nuclei provide several modulatory inputs to the hippocampus, including a cholinergic input which Hasselmo (1995) has suggested may function to regulate hippocampal dynamics on a continuum between two states: a storage state in which incoming information is encoded as an intermediate-term memory and a recall state when this information is reactivated. In this theory, anticholinergic drugs such as scopolamine should disrupt learning by selectively reducing the hippocampus's ability to store new information. An approximation of Hasselmo's idea can be implemented in the corticohippocampal model by a simple manipulation of hippocampal learning rate; this manipulation is formally equivalent to adjusting the amount of time the hippocampus spends in learning and recall states. With this manipulation, the model successfully accounts for the effects of scopolamine in retarding classical conditioning in humans (Solomon, Groccia-Ellison, Flynn, Mirak, Edwards, Dunehew, & Stanton, 1993) and animals (Solomon, Soloman, van der Schaaf, & Perry, 1983). The model further predicts that although cholinergic agonists (such as Tacrine) may improve learning in subjects with artificially depressed brain acetylcholine levels, there may be limited memory improvement in normal subjects from such cholinergic therapy. This is consistent with the general finding of a U-shaped dose response curve for cholinergic drugs in normal subjects: low to moderate doses may improve learning, but higher doses are ineffective or even degrade learning (e.g., Ennaceur & Meliani, 1992; Dumery, Derer, & Blozovski, 1988; etc.).
先前一个关于皮质-海马相互作用的神经计算模型(格鲁克和迈尔斯,1993年)可以为研究经典条件作用过程中隔-海马调制的行为效应提供一个框架。该模型假定,海马区域对于学习过程中形成新的刺激表征是必要的,但对于简单联想的形成并非必要。本文探讨了隔-海马相互作用如何影响这一功能。隔核向海马提供多种调制性输入,包括一种胆碱能输入,哈塞尔莫(1995年)认为这种胆碱能输入可能在两种状态之间的连续过程中调节海马动力学:一种是存储状态,此时传入信息被编码为中期记忆;另一种是回忆状态,此时该信息被重新激活。在这个理论中,像东莨菪碱这样的抗胆碱能药物应该通过选择性降低海马存储新信息的能力来干扰学习。通过简单地操纵海马的学习率,可以在皮质-海马模型中实现对哈塞尔莫观点的近似模拟;这种操纵在形式上等同于调整海马在学习和回忆状态所花费的时间量。通过这种操纵,该模型成功地解释了东莨菪碱对人类(所罗门、格罗西亚-埃里森、弗林、米拉克斯、爱德华兹、杜内休和斯坦顿,1993年)和动物(所罗门、所罗门、范德沙夫和佩里,1983年)经典条件作用延迟的影响。该模型进一步预测,尽管胆碱能激动剂(如他克林)可能会改善脑内乙酰胆碱水平人为降低的受试者的学习,但这种胆碱能疗法对正常受试者的记忆改善可能有限。这与正常受试者中胆碱能药物呈U形剂量反应曲线的一般发现是一致的:低至中等剂量可能会改善学习,但更高剂量则无效甚至会损害学习(例如,恩纳瑟尔和梅利亚尼,1992年;杜梅里、德勒和布洛佐夫斯基,1988年等)。