Hanson R E, Islam-Faridi M N, Percival E A, Crane C F, Ji Y, McKnight T D, Stelly D M, Price H J
Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA.
Chromosoma. 1996 Jul;105(1):55-61. doi: 10.1007/BF02510039.
The most widely cultivated species of cotton, Gossypium hirsutum, is a disomic tetraploid (2n=4x=52). It has been proposed previously that extant A- and D-genome species are most closely related to the diploid progenitors of the tetraploid. We used fluorescent in situ hybridization (FISH) to determine the distribution of 5S and 18S-28S rDNA loci in the A-genome species G. herbaceum and G. arboreum, the D-genome species G. raimondii and G. thurberi, and the AD tetraploid G. hirsutum. High signal-to-noise, single-label FISH was used to enumerate rDNA loci, and simultaneous, dual-label FISH was used to determine the syntenic relationships of 5S rDNA loci relative to 18S-28S rDNA loci. These techniques provided greater sensitivity than our previous methods and permitted detection of six new G. hirsutum 18S-28S rDNA loci, bringing the total number of observed loci to 11. Differences in the intensity of the hybridization signal at these loci allowed us to designate them as major, intermediate, or minor 18S-28S loci. Using genomic painting with labeled A-genome DNA, five 18S-28S loci were localized to the G. hirsutum A-subgenome and six to the D-subgenome. Four of the 11 18S-28S rDNA loci in G. hirsutum could not be accounted for in its presumed diploid progenitors, as both A-genome species had three loci and both D-genome species had four. G. hirsutum has two 5S rDNA loci, both of which are syntenic to major 18S-28S rDNA loci. All four of the diploid genomes we examined contained a single 5S locus. In g. herbaceum (A1) and G. thurberi (D1), the 5S locus is syntenic to a major 18S-28S locus, but in G. arboreum (A2) and G. raimondii (D5), the proposed D-genome progenitor of G. hirsutum, the 5S loci are syntenic to minor and intermediate 18S-28S loci, respectively. The multiplicity, variation in size and site number, and lack of additivity between the tetraploid species and its putative diploid ancestors indicate that the behavior of rDNA loci in cotton is nondogmatic, and considerably more complex and dynamic than previously envisioned. The relative variability of 18S-28S rDNA loci versus 5S rDNA loci suggests that the behavior of tandem repeats can differ widely.
棉花中种植最广泛的物种陆地棉(Gossypium hirsutum)是一种双体四倍体(2n = 4x = 52)。此前有人提出,现存的A基因组和D基因组物种与该四倍体的二倍体祖先关系最为密切。我们使用荧光原位杂交(FISH)技术来确定5S和18S - 28S rDNA基因座在A基因组物种草棉(G. herbaceum)和树棉(G. arboreum)、D基因组物种雷蒙德氏棉(G. raimondii)和瑟伯氏棉(G. thurberi)以及AD四倍体陆地棉中的分布情况。高信噪比的单标记FISH用于计数rDNA基因座,同时使用双标记FISH来确定5S rDNA基因座相对于18S - 28S rDNA基因座的同线关系。这些技术比我们之前的方法具有更高的灵敏度,并且能够检测到6个新的陆地棉18S - 28S rDNA基因座,使观察到的基因座总数达到11个。这些基因座杂交信号强度的差异使我们能够将它们指定为主要、中等或次要的18S - 28S基因座。使用标记的A基因组DNA进行基因组绘图,5个18S - 28S基因座定位到陆地棉的A亚基因组,6个定位到D亚基因组。陆地棉的11个18S - 28S rDNA基因座中有4个在其假定的二倍体祖先中无法找到对应,因为两个A基因组物种都有3个基因座,两个D基因组物种都有4个基因座。陆地棉有两个5S rDNA基因座,它们都与主要的18S - 28S rDNA基因座同线。我们检测的所有四个二倍体基因组都包含一个5S基因座。在草棉(A1)和瑟伯氏棉(D1)中,5S基因座与一个主要的18S - 28S基因座同线,但在树棉(A2)和雷蒙德氏棉(D5,陆地棉假定的D基因组祖先)中,5S基因座分别与次要和中等的18S - 28S基因座同线。四倍体物种与其假定的二倍体祖先之间的多重性、大小和位点数量的变化以及缺乏可加性表明,棉花中rDNA基因座的行为并非教条式的,而是比之前设想的要复杂和动态得多。18S - 28S rDNA基因座与5S rDNA基因座的相对变异性表明串联重复序列的行为可能有很大差异。