Suppr超能文献

神经酰胺信号传导与免疫反应。

Ceramide signalling and the immune response.

作者信息

Ballou L R, Laulederkind S J, Rosloniec E F, Raghow R

机构信息

Department of Medicine, University of Tennessee, Memphis 38104, USA.

出版信息

Biochim Biophys Acta. 1996 Jun 11;1301(3):273-87. doi: 10.1016/0005-2760(96)00004-5.

Abstract

Ceramide, produced through either the induction of SM hydrolysis or synthesized de novo transduces signals mediating differentiation, growth, growth arrest, apoptosis, cytokine biosynthesis and secretion, and a variety of other cellular functions. A generalized ceramide signal transduction scheme is shown in Fig. 2 in which ceramide is generated through the activation of distinct SMases residing in separate subcellular compartments in response to specific stimuli. Clearly, specificity of cellular responses to ceramide depends upon many factors which include the nature of the stimulus, co-stimulatory signals and the cell type involved. Ceramide derived from neutral SMase activation is thought to be involved in modulating CAPK and MAP kinases, PLA2 (arachidonic acid mobilization), and CAPP while ceramide generated through acid SMase activation appears to be primarily involved in NF-kappa B activation. While there is no apparent cross-talk between these two ceramide-mediated signalling pathways, there is likely to be significant cross-talk between ceramide signalling and other signal transduction pathways (e.g., the PKC and MAP kinase pathways). Other downstream targets for ceramide action include Cox, IL-6 and IL-2 gene expression, PKC zeta, Vav, Rb, c-Myc, c-Fos, c-Jun and other transcriptional regulators. Many, if not all, of these ceramide-mediated signalling events have been identified in the various cells comprising the immune system and are integral to the optimal functioning of the immune system. Although the role of the SM pathway and the generation of ceramide in T and B lymphocytes have only recently been recognized, it is clear from these studies that signal transduction through SM and ceramide can strongly affect the immune response, either directly through cell signalling events, or indirectly through cytokines produced by other cells as the result of signalling through the SM pathway. An overview of the signalling mechanisms coupling ceramide to the modulation of the immune response is depicted in Fig. 3 and shows how ceramide may play pivotal roles in regulating a number of complex processes. The SM pathway represents a potentially valuable focal point for therapeutic control of immune responses, perhaps for either enhancement of the activity of T cells in the elimination of tumors, or the down-regulation of lymphocyte function in instances of autoimmune disease. The recent explosion of knowledge regarding ceramide signalling notwithstanding, a number of critical questions need to be answered before a comprehensive, mechanistic understanding can be formulated relative to the incredibly varied effects of ceramide on cell function. For example, (i) how is a structurally simple molecule like ceramide able to mediate so many different, and sometimes paradoxical, physiological responses ranging from cell proliferation and differentiation to inhibition of cell growth and apoptosis, (ii) what are the molecular identities and modes of activation of the various SMase isoforms, (iii) what determines the distribution of the unique isoforms of SMase in cells of different lineages or at different stages of differentiation, (iv) what is the relative contribution of ceramide generated through SM hydrolysis versus de novo synthesis, and (v) by what means does ceramide interact with specific intracellular targets? Although a number of ceramide-activatable kinases, phosphatases, and their protein substrates have been identified, a more extensive search for additional cellular targets will be indispensable in determining the phosphorylation cascades linking the activation of the SM pathway to the regulation of nuclear events. Clearly, cross-talk between ceramide-induced signal transduction cascades and other signalling pathways adds to the inherent difficulty in distinguishing the specific effects of complex, intertwining signalling pathways.

摘要

神经酰胺可通过鞘磷脂(SM)水解诱导产生,也可从头合成,它能转导介导分化、生长、生长停滞、凋亡、细胞因子生物合成与分泌以及多种其他细胞功能的信号。图2展示了一个通用的神经酰胺信号转导模式,其中神经酰胺是通过驻留在不同亚细胞区室中的特定鞘磷脂酶(SMase)激活而产生的,以响应特定刺激。显然,细胞对神经酰胺反应的特异性取决于许多因素,包括刺激的性质、共刺激信号以及所涉及的细胞类型。源自中性SMase激活的神经酰胺被认为参与调节钙依赖性蛋白激酶(CAPK)和丝裂原活化蛋白激酶(MAP激酶)、磷脂酶A2(花生四烯酸动员)和CAPP,而通过酸性SMase激活产生的神经酰胺似乎主要参与核因子κB(NF-κB)的激活。虽然这两条由神经酰胺介导的信号通路之间没有明显的相互作用,但神经酰胺信号通路与其他信号转导通路(如蛋白激酶C(PKC)和MAP激酶通路)之间可能存在显著的相互作用。神经酰胺作用的其他下游靶点包括环氧化酶(Cox)、白细胞介素-6(IL-6)和白细胞介素-2(IL-2)基因表达、PKC ζ、Vav、视网膜母细胞瘤蛋白(Rb)、原癌基因c-Myc、原癌基因c-Fos、原癌基因c-Jun和其他转录调节因子。在构成免疫系统的各种细胞中,许多(如果不是全部)这些由神经酰胺介导的信号事件已被确定,并且是免疫系统最佳功能所必需的。尽管SM途径和神经酰胺在T和B淋巴细胞中的产生作用直到最近才被认识到,但从这些研究中可以清楚地看出,通过SM和神经酰胺的信号转导可以强烈影响免疫反应,要么直接通过细胞信号事件,要么间接通过其他细胞因SM途径信号转导而产生的细胞因子。图3描绘了将神经酰胺与免疫反应调节相耦合的信号机制概述,并展示了神经酰胺如何在调节许多复杂过程中发挥关键作用。SM途径代表了免疫反应治疗控制的一个潜在有价值的焦点,可能用于增强T细胞在消除肿瘤中的活性,或者在自身免疫性疾病情况下下调淋巴细胞功能。尽管最近关于神经酰胺信号转导的知识激增,但在能够就神经酰胺对细胞功能的极其多样的影响形成全面的机制理解之前,仍有许多关键问题需要回答。例如,(i)像神经酰胺这样结构简单的分子如何能够介导如此多不同的,有时甚至是矛盾的生理反应,从细胞增殖和分化到细胞生长抑制和凋亡,(ii)各种SMase同工型的分子身份和激活模式是什么,(iii)是什么决定了不同谱系细胞或不同分化阶段细胞中SMase独特同工型的分布,(iv)通过SM水解产生的神经酰胺与从头合成产生的神经酰胺的相对贡献是什么,以及(v)神经酰胺通过什么方式与特定的细胞内靶点相互作用?尽管已经确定了一些可被神经酰胺激活的激酶、磷酸酶及其蛋白质底物,但在确定将SM途径的激活与核事件调节联系起来的磷酸化级联反应时,更广泛地寻找其他细胞靶点将是必不可少的。显然,神经酰胺诱导的信号转导级联反应与其他信号通路之间的相互作用增加了区分复杂、交织的信号通路特定效应的固有难度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验