Suppr超能文献

Passive diffusion through polymeric membranes: a novel cleanup procedure for analysis of azinphos-methyl and azinphos-ethyl residues in fruits and vegetables.

作者信息

Ahmad N, Guo L, Mandarakas P, Appleby S, Bugueno G

机构信息

New South Wales Department of Agriculture, Biological and Chemical Research Institute, Rydalmere, Australia.

出版信息

J AOAC Int. 1995 Nov-Dec;78(6):1450-4.

PMID:8664581
Abstract

A novel procedure is described for simple removal of coextractives prior to analysis of fruits and vegetables for azinphos-methyl and azinphos-ethyl residues. The solvent extract is concentrated, placed in a polymeric membrane tube, and then dialyzed in cyclohexane. Both azinphos-methyl and azinphos-ethyl diffuse into the surrounding solvent while coextractants remain inside the membrane. The dialyzing solvent is exchanged during concentration with n-hexane and analyzed without further cleanup by gas-liquid chromatography with a specific thermionic detector. The detection limit for a 25 g grape sample with final volume of extract made to 15 mL was 0.01 mg/kg. Recoveries of both residues from grapes averaged 107% (spike levels of 0.3 to 2.0 mg/kg). From a 20 g spinach sample, recoveries averaged 82% for azinphos-methyl and 72% for azinphos-ethyl when final volume of extract was made to 5 mL (spike levels of 0.1 to 1.0 mg/kg). Recoveries from 20 types of fruits and vegetables (20 g sample spiked at 1 mg/kg for both azinphos-methyl and azinphos-ethyl) were consistently greater than 70%, except for strawberries (61-67%) and avocado (28-34%). The high lipid content of avocado may impede diffusion of azinphos-methyl and azinphos-ethyl through the polymeric membrane. A field evaluation of the procedure showed a strong correlation (r = 0.957) between azinphos-methyl residues on grapes and treatments with 2 spray formulations. The membrane cleanup procedure is a simple and cost-effective alternative to other column or liquid-liquid partitioning procedures for azinphos-methyl and azinphos-ethyl residue analysis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验