Pourcher T, Bibi E, Kaback H R, Leblanc G
Laboratoire J. Maetz, Département de Biologie Cellulaire et Moléculaire/CEA, France.
Biochemistry. 1996 Apr 2;35(13):4161-8. doi: 10.1021/bi9527496.
In order to study the secondary structure of the melibiose permease of Escherichia coli, 57 melB-phoA gene fusions were constructed and assayed for alkaline phosphatase activity. In general agreement with a previously suggested secondary structure model of melibiose permease [Botfield, M. C., Naguchi, K., Tsuchiya, T., & Wilson, T.H. (1992) J. Biol. Chem. 267, 1818], clusters of fusions exhibiting low and high phosphatase activity fusions alternate along the primary sequence. Fusions with high activity generally cluster at residues predicted to be in the periplasmic half of transmembrane domains or in periplasmic loops, while fusions with low activity cluster at residues predicted to be in the cytoplasmic half of transmembrane domains or in cytoplasmic loops. Taken together, the findings strongly support the contention that melibiose permease contains 12 transmembrane domains that traverse the membrane in zigzag fashion connected by hydrophilic loops that are exposed alternatively on the periplasmic or cytoplasmic surfaces of the membrane with the N and C termini on the cytoplasmic face of the membrane. Moreover, on the basis of the finding that the cytoplasmic half of an out-going segment is sufficient for alkaline phosphatase export to the periplasm while the periplasmic half of an in-going segment prevents it [Calamia, T., & Manoil, C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4937], the activity profile of the melibiose permease-alkaline phosphatase fusions is consistent with the predicted topology of seven of 12 transmembrane segments. However, five transmembrane domains require adjustment, and as a consequence, the size of the central cytoplasmic loop is reduced and a significant number of charged residues are shifted from a hydrophilic to a hydrophobic domain in this region of the transporter.
为了研究大肠杆菌蜜二糖通透酶的二级结构,构建了57个melB - phoA基因融合体,并检测其碱性磷酸酶活性。这与之前提出的蜜二糖通透酶二级结构模型[Botfield, M. C., Naguchi, K., Tsuchiya, T., & Wilson, T.H. (1992) J. Biol. Chem. 267, 1818]总体一致,表现出低磷酸酶活性和高磷酸酶活性的融合体簇沿着一级序列交替出现。高活性融合体通常聚集在预测位于跨膜结构域周质侧一半或周质环中的残基处,而低活性融合体则聚集在预测位于跨膜结构域胞质侧一半或胞质环中的残基处。综合来看,这些发现有力地支持了这样的观点:蜜二糖通透酶包含12个跨膜结构域,这些结构域以锯齿状方式穿过膜,由亲水性环连接,这些环交替暴露在膜的周质或胞质表面,N端和C端位于膜的胞质面。此外,基于外向片段的胞质侧一半足以将碱性磷酸酶输出到周质,而内向片段的周质侧一半则阻止其输出这一发现[Calamia, T., & Manoil, C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4937],蜜二糖通透酶 - 碱性磷酸酶融合体的活性图谱与12个跨膜片段中7个的预测拓扑结构一致。然而,5个跨膜结构域需要调整,结果是中央胞质环的大小减小,并且在转运蛋白的这个区域有大量带电荷的残基从亲水区转移到疏水区。