Suppr超能文献

布氏锥虫引起的免疫抑制的体外模拟:γ干扰素和肿瘤坏死因子在抑制途径中的积极参与。

In vitro simulation of immunosuppression caused by Trypanosoma brucei: active involvement of gamma interferon and tumor necrosis factor in the pathway of suppression.

作者信息

Darji A, Beschin A, Sileghem M, Heremans H, Brys L, De Baetselier P

机构信息

Unit of Cellular Immunology, Flemish Interuniversity Institute of Biotechnology, University of Brussels (V.U.B.), Sint Genesius Rode, Belgium.

出版信息

Infect Immun. 1996 Jun;64(6):1937-43. doi: 10.1128/iai.64.6.1937-1943.1996.

Abstract

Experimental infections of mice with the African trypanosome Trypanosoma brucei lead to a profound state of T-cell unresponsiveness in the lymph node cell (LNC) compartment. This suppression is mediated by macrophage-like cells which inhibit interleukin 2 (IL-2) secretion and down-regulate IL-2 receptor expression (M. Sileghem, A. Darji, R. Hamers, M. Van de Winkel, and P. De Baetselier, Eur. J. Immunol. 19:829-835, 1989). Similar suppressive cells can be generated in vitro by pulsing 2C11-12 macrophage hybridoma cells with opsonized T. brucei parasites (2C11-12P cells). Cocultures of 2C11-12P cells and LNCs secrete higher levels of gamma interferon (IFN-gamma), and the hyperproduction of IFN-gamma was found to be confined to CD8+ lymphoid cells. Elimination of CD8+ cells from cocultures of 2C11-12P cells and LNCs restores the T-cell proliferative response. Furthermore, addition of neutralizing anti-IFN-gamma antibodies to the cocultures reduces the level of suppression and concomitantly restores the level of IL-2 receptor expression. Hence, IFN-gamma plays a cardinal role in this in vitro model for T. brucei-elicited immunosuppression. Cocultures of LNCs and 2C11-12P cells in a two-chamber culture system further demonstrated that cell-cell contact is required for hyperproduction of IFN-gamma and, moreover, that IFN-gamma cooperates with a 2C11-12P-derived diffusible factor to exert its suppressive activity. Finally, tumor necrosis factor alpha (TNF-alpha produced by 2C11-12P cells was found to be implicated in the hyperproduction of IFN-gamma, since addition of neutralizing anti-TNF-alpha antibodies to cocultures reduced the level of suppression and concomitantly abrogated the hyperproduction of IFN-gamma. Collectively, our findings indicate that T. brucei-elicited suppressive 2C11-12 macrophage cells differentially influence T-cell subpopulations: (i) CD8+ cells are signaled via cell-cell contact to produce IFN-gamma, and TNF-alpha is implicated in this process, and (ii) locally produced IFN-gamma and macrophage-released factors act in concert to inhibit CD4+ and CD8+ T-cell proliferative responses.

摘要

用非洲锥虫布氏锥虫对小鼠进行实验性感染,会导致淋巴结细胞(LNC)区室出现深度T细胞无反应状态。这种抑制作用由类似巨噬细胞的细胞介导,这些细胞抑制白细胞介素2(IL-2)的分泌并下调IL-2受体的表达(M. 西莱格姆、A. 达吉、R. 哈默斯、M. 范德温克尔和P. 德贝茨利尔,《欧洲免疫学杂志》19:829 - 835,1989年)。通过用调理过的布氏锥虫寄生虫脉冲处理2C11 - 12巨噬细胞杂交瘤细胞(2C11 - 12P细胞),可在体外产生类似的抑制性细胞。2C11 - 12P细胞与LNC的共培养物分泌更高水平的γ干扰素(IFN - γ),并且发现IFN - γ的过量产生仅限于CD8 + 淋巴细胞。从2C11 - 12P细胞与LNC的共培养物中去除CD8 + 细胞可恢复T细胞增殖反应。此外,向共培养物中添加中和性抗IFN - γ抗体可降低抑制水平,并同时恢复IL - 2受体表达水平。因此,IFN - γ在这种布氏锥虫引发的免疫抑制体外模型中起关键作用。在双室培养系统中LNC与2C11 - 12P细胞的共培养进一步证明,细胞间接触是IFN - γ过量产生所必需的,而且,IFN - γ与2C11 - 12P衍生的可扩散因子协同发挥其抑制活性。最后,发现2C11 - 12P细胞产生的肿瘤坏死因子α(TNF - α)与IFN - γ的过量产生有关,因为向共培养物中添加中和性抗TNF - α抗体可降低抑制水平,并同时消除IFN - γ的过量产生。总体而言,我们的研究结果表明,布氏锥虫引发的抑制性2C11 - 12巨噬细胞对T细胞亚群有不同影响:(i)CD8 + 细胞通过细胞间接触被信号传导以产生IFN - γ,TNF - α参与此过程,(ii)局部产生的IFN - γ和巨噬细胞释放的因子协同作用以抑制CD4 + 和CD8 + T细胞增殖反应。

相似文献

4
Mechanisms underlying trypanosome-elicited immunosuppression.
Ann Soc Belg Med Trop. 1992;72 Suppl 1:27-38.
8
Relative contribution of interferon-gamma and interleukin-10 to resistance to murine African trypanosomosis.
J Infect Dis. 2001 Jun 15;183(12):1794-800. doi: 10.1086/320731. Epub 2001 May 15.

引用本文的文献

2
Comparative pathology of mice infected with high and low virulence of Indonesian isolates.
J Parasit Dis. 2021 Jun;45(2):502-511. doi: 10.1007/s12639-020-01328-z. Epub 2021 Jan 3.
3
To the Skin and Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host.
Front Immunol. 2020 Jun 12;11:1250. doi: 10.3389/fimmu.2020.01250. eCollection 2020.
4
Host Immune Responses and Immune Evasion Strategies in African Trypanosomiasis.
Front Immunol. 2019 Nov 22;10:2738. doi: 10.3389/fimmu.2019.02738. eCollection 2019.
5
Cell Cycle Inhibition To Treat Sleeping Sickness.
mBio. 2017 Sep 19;8(5):e01427-17. doi: 10.1128/mBio.01427-17.
6
African Trypanosomes Undermine Humoral Responses and Vaccine Development: Link with Inflammatory Responses?
Front Immunol. 2017 May 24;8:582. doi: 10.3389/fimmu.2017.00582. eCollection 2017.
7
Immune Evasion Strategies of Trypanosoma brucei within the Mammalian Host: Progression to Pathogenicity.
Front Immunol. 2016 Jun 24;7:233. doi: 10.3389/fimmu.2016.00233. eCollection 2016.
9
Affinity is an important determinant of the anti-trypanosome activity of nanobodies.
PLoS Negl Trop Dis. 2012;6(11):e1902. doi: 10.1371/journal.pntd.0001902. Epub 2012 Nov 15.
10
Genetic control of resistance to Trypanosoma brucei brucei infection in mice.
PLoS Negl Trop Dis. 2011 Jun;5(6):e1173. doi: 10.1371/journal.pntd.0001173. Epub 2011 Jun 7.

本文引用的文献

9
Generation and biological characterization of membrane-bound, uncleavable murine tumor necrosis factor.
J Biol Chem. 1995 Aug 4;270(31):18473-8. doi: 10.1074/jbc.270.31.18473.
10
Host genotype influences immunomodulation by interferon.
Nature. 1980 Mar 13;284(5752):173-5. doi: 10.1038/284173a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验