Suppr超能文献

大肠杆菌二氢叶酸还原酶与5-甲酰四氢叶酸(亚叶酸)在两种空间群中的晶体结构:蝶啶O4烯醇化的证据

Crystal structures of Escherichia coli dihydrofolate reductase complexed with 5-formyltetrahydrofolate (folinic acid) in two space groups: evidence for enolization of pteridine O4.

作者信息

Lee H, Reyes V M, Kraut J

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla 92093-0506, USA.

出版信息

Biochemistry. 1996 Jun 4;35(22):7012-20. doi: 10.1021/bi960028g.

Abstract

The crystal structure of Escherichia coli dihydrofolate reductase (ecDHFR, EC 1.5.1.3) as a binary complex with folinic acid (5-formyl-5,6,7,8-tetrahydrofolate; also called leucovorin or citrovorum factor) has been solved in two space groups, P6(1) and P6(5), with, respectively, two molecules and one molecule per asymmetric unit. The crystal structures have been refined to an R-factor of 14.2% at resolutions of 2.0 and 1.9 A. The P6(1) structure is isomorphous with several previously reported ecDHFR binary complexes [Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C., & Kraut, J. (1982) J. Biol. Chem. 257, 13650-13662; Reyes, V.M., Sawaya, M.R., Brown, K.A., & Kraut, J. (1995) Biochemistry 34, 2710-2723]; enzyme and ligand conformations are very similar to the P6(1) 5,10-dideazatetrahydrofolate complex. While the two enzyme subdomains of the P6(1) structure are nearly in the closed conformation, exemplified by the methotrexate P6(1) binary complex, in the P6(5) structure they are in an intermediate conformation, halfway between the closed and the fully open conformation of the apoenzyme [Bystroff, C., Oatley, S.J., & Kraut, J. (1990) Biochemistry 29, 3263-3277]. Thus crystal packing strongly influences this aspect of the enzyme structure. In contrast to the P6(1) structure, in which the Met-20 loop (residues 9-23) is turned away from the substrate binding pocket, in the P6(5) structure the Met-20 loop blocks the pocket and protrudes into the cofactor binding site. In this respect, the P6(5) structure is unique. Additionally, positioning of a Ca2+ ion (a component of the crystallization medium) is different in the two crystal packings: in the P6(1) structure it lies at the boundary between the two molecules of the asymmetric unit, while in P6(5) it coordinates two water molecules, the hydroxyl group of an ethanol molecule, and the backbone carbonyl oxygens of Glu-17, Asn-18, and Met-20. The Ca2+ ion thus stabilizes a single turn of 3(10) helix (residues 16-18 in the Met-20 loop), a second unique feature of the P6(5) crystal structure. The disposition of the N5-formyl group in these structures indicates formation, at least half of the time, of an intramolecular hydrogen bond between the formyl oxygen and O4 of the tetrahydropterin ring. This observation is consistent with the existence of an enol-keto equilibrium in which the enolic tautomer is favored when a hydrogen-bond acceptor is present between O4 and N5. Such would be the case whenever a water molecule occupies that site as part of a hypothetical proton-relay mechanism. Two arginine side chains, Arg-52 in the P6(5) structure and Arg-44 in molecule A of the P6(1) structure, are turned away drastically from the ligand (p-aminobenzoyl)glutamic acid moiety as compared with previously reported DHFR binary complex structures. As in the ecDHFR dideazatetrahydrofolate complex, in both the P6(1) and P6(5) structures a water molecule bridges pteridine O4 and Trp-22(N epsilon 1) with ideal geometry for hydrogen bonding, perhaps contributing to the slow release of 5,6,7,8-tetrahydrofolate from the enzyme-product complex. When either the P6(1) or the P6(5) structures are superimposed with the NADPH holoenzyme [Sawaya, M. R. (1994) Ph.D. Dissertation, University of California, San Diego], we find that the distances between the nicotinamide C4 and pteridine C6 and C7 are very short, 2.1 and 1.7 A in the P6(1) case and 2.0 and 1.4 A in the P6(5) case, perhaps in part explaining the more rapid release of tetrahydrofolate from the enzyme-product complex when NADPH is bound.

摘要

大肠杆菌二氢叶酸还原酶(ecDHFR,EC 1.5.1.3)与亚叶酸(5-甲酰基-5,6,7,8-四氢叶酸;也称为亚叶酸钙或嗜橙菌因子)形成的二元复合物的晶体结构已在两个空间群P6(1)和P6(5)中解析出来,每个不对称单元分别含有两个分子和一个分子。晶体结构已在2.0 Å和1.9 Å分辨率下精修至R因子为14.2%。P6(1)结构与先前报道的几种ecDHFR二元复合物同晶型[Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C., & Kraut, J. (1982) J. Biol. Chem. 257, 13650 - 13662; Reyes, V.M., Sawaya, M.R., Brown, K.A., & Kraut, J. (1995) Biochemistry 34, 2710 - 2723];酶和配体的构象与P6(1) 5,10-二去氮四氢叶酸复合物非常相似。虽然P6(1)结构的两个酶亚结构域几乎处于封闭构象,以甲氨蝶呤P6(1)二元复合物为例,但在P6(5)结构中它们处于中间构象,介于脱辅基酶的封闭构象和完全开放构象之间[Bystroff, C., Oatley, S.J., & Kraut, J. (1990) Biochemistry 29, 3263 - 3277]。因此,晶体堆积强烈影响酶结构的这一方面。与P6(1)结构不同,在P6(1)结构中Met-20环(残基9 - 23)远离底物结合口袋,而在P6(5)结构中,Met-20环阻塞口袋并伸入辅因子结合位点。在这方面,P6(5)结构是独特的。此外,Ca2+离子(结晶介质的一个成分)在两种晶体堆积中的位置不同:在P6(1)结构中它位于不对称单元的两个分子之间的边界处,而在P6(5)中它与两个水分子、一个乙醇分子的羟基以及Glu-17、Asn-18和Met-20的主链羰基氧配位。因此,Ca2+离子稳定了3(10)螺旋的单圈(Met-20环中的残基16 - 18),这是P6(5)晶体结构的第二个独特特征。这些结构中N5-甲酰基的排列表明,至少一半时间,甲酰基氧与四氢蝶呤环的O4之间形成分子内氢键。这一观察结果与烯醇-酮平衡的存在一致,当O4和N5之间存在氢键受体时,烯醇互变异构体更受青睐。每当水分子作为假设的质子传递机制的一部分占据该位点时,情况就是如此。与先前报道的DHFR二元复合物结构相比,P6(5)结构中的两个精氨酸侧链(Arg-52)和P6(1)结构分子A中的Arg-44,都大幅远离配体(对氨基苯甲酰)谷氨酸部分。与ecDHFR二去氮四氢叶酸复合物一样,在P6(1)和P6(5)结构中,一个水分子以理想的氢键几何结构桥连蝶啶O4和Trp-22(Nε1),这可能有助于5,6,7,8-四氢叶酸从酶-产物复合物中缓慢释放。当将P6(1)或P6(5)结构与NADPH全酶[Sawaya, M. R. (1994) Ph.D. Dissertation, University of California, San Diego]叠加时,我们发现烟酰胺C4与蝶啶C6和C7之间的距离非常短,在P6(1)情况下为2.1 Å和1.7 Å,在P6(5)情况下为2.0 Å和1.4 Å,这可能部分解释了当结合NADPH时,四氢叶酸从酶-产物复合物中释放得更快。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验