Hirschl R B, Tooley R, Parent A, Johnson K, Bartlett R H
Department of Surgery, University of Michigan, Ann Arbor, USA.
Crit Care Med. 1996 Jun;24(6):1001-8. doi: 10.1097/00003246-199606000-00021.
To investigate whether pulmonary compliance and gas exchange will be sustained during "total" perfluorocarbon liquid ventilation followed by "partial" perfluorocarbon liquid ventilation when compared with gas ventilation in the setting of the acute respiratory distress syndrome (ARDS).
A prospective, controlled, laboratory study.
A university research laboratory.
Ten sheep, weighing 12.7 to 25.0 kg.
Lung injury was induced in ten young sheep, utilizing a right atrial injection of 0.07 mL/kg of oleic acid followed by saline pulmonary lavage. Bijugular venovenous extracorporeal life support access, a pulmonary artery catheter, and a carotid artery catheter were placed. When the alveolar-arterial O2 gradient was >/= 600 torr and PaO2 </= 50 torr (</= 6.7 kPa) with an FIO2 of 1.0, extracorporeal life support was instituted. For the first 30 mins on extracorporeal life support, all animals were ventilated with gas. Animals were then ventilated with equal tidal volumes of 15 mL/kg during gas ventilation (n=5) over the ensuing 2.5 hrs, or with total liquid ventilation for 1 hr, followed by partial liquid ventilation for 1.5 hrs (total/partial liquid ventilation, n=5).
An increase in physiologic shunt (gas ventilation = 69 +/- 11%, total/partial liquid ventilation = 71 +/- 3%) and a decrease in static total pulmonary compliance measured at 20 mL/kg inflation volume (gas ventilation = O.48 +/- 0.03 mL/cm H2O/kg, total/partial liquid ventilation = 0.50 +/- 0.17 mL/cm H2O/kg) were observed in both groups with induction of lung injury. Physiologic shunt was significantly reduced during total and partial liquid ventilation when compared with physiologic shunt observed in the gas ventilation animals (gas ventilation = 93 +/- 8%, total liquid ventilation = 45 +/- 11%, p<.001; gas ventilation = 95 +/- 3%, partial liquid ventilation = 61 +/- 12%, p<.001), while static compliance was significantly increased in the total, but not the partial liquid ventilated animals when compared with the gas ventilated group (gas ventilation = 0.43 +/- 0.03 mL/cm H2O/kg, total liquid ventilation = 1.13 +/- 18 mL/cm H2O/kg, p <.001; gas ventilation = 0.41 +/- 0.02 mL/cm H2O/kg, partial liquid ventilation = 0.47 +/- 0.08, p = .151). In addition, the extracorporeal life support flow rate required to maintain adequate oxygenation was significantly lower in the total/partial liquid ventilation group when compared with that of the gas ventilation group (gas ventilation = 89 +/- 7 mL/kg/min, total liquid ventilation = 22 +/- 10 mL/kg/min, p <.001; gas ventilation = 91 +/- 12 mL/kg/min, partial liquid ventilation = 41 +/- 11 mL/kg/min, p < .001). Lung biopsy light microscopy demonstrated a marked reduction in alveolar hemorrhage, lung fluid accumulation, and inflammatory infiltration in the total/partial liquid ventilation animals when compared with the gas ventilation animals.
In a model of severe ARDS, pulmonary gas exchange is improved during total followed by partial liquid ventilation. Pulmonary compliance is improved during total, but not during partial liquid ventilation. Total followed by partial liquid ventilation was associated with a reduction in alveolar hemorrhage, pulmonary edema, and lung inflammatory infiltration.
研究在急性呼吸窘迫综合征(ARDS)情况下,与气体通气相比,“全”氟碳液体通气后接“半”氟碳液体通气时,肺顺应性和气体交换是否能得以维持。
一项前瞻性、对照性实验室研究。
一所大学研究实验室。
10只体重在12.7至25.0千克之间的绵羊。
对10只幼羊诱发肺损伤,经右心房注射0.07毫升/千克油酸,随后进行生理盐水肺灌洗。建立双侧颈静脉静脉-静脉体外生命支持通路、肺动脉导管和颈动脉导管。当吸入氧分数(FIO₂)为1.0时,肺泡-动脉血氧分压差≥600托(≥6.7千帕)且动脉血氧分压≤50托(≤6.7千帕)时,启动体外生命支持。在体外生命支持的最初30分钟,所有动物均采用气体通气。随后,在接下来的2.5小时内,气体通气组(n = 5)动物以15毫升/千克的等量潮气量进行通气,而另一组(n = 5)先进行1小时的全液体通气,接着进行1.5小时的半液体通气(全/半液体通气)。
两组动物在诱发肺损伤后,生理分流均增加(气体通气组 = 69 ± 11%,全/半液体通气组 = 71 ± 3%),且在20毫升/千克充气量时测量的静态总肺顺应性降低(气体通气组 = 0.48 ± 0.03毫升/厘米水柱/千克,全/半液体通气组 = 0.50 ± 0.17毫升/厘米水柱/千克)。与气体通气组动物相比,全液体通气和半液体通气期间生理分流显著降低(气体通气组 = 93 ± 8%,全液体通气组 = 45 ± 11%,p <.001;气体通气组 = 95 ± 3%,半液体通气组 = 61 ± 12%,p <.001),而与气体通气组相比,全液体通气组动物的静态顺应性显著增加(气体通气组 = 0.43 ± 0.03毫升/厘米水柱/千克,全液体通气组 = 1.13 ± 1.8毫升/厘米水柱/千克,p <.001;气体通气组 = 0.41 ± 0.02毫升/厘米水柱/千克,半液体通气组 = 0.47 ± 0.08,p = 0.151)。此外,与气体通气组相比,全/半液体通气组维持充足氧合所需的体外生命支持流速显著降低(气体通气组 = 89 ± 7毫升/千克/分钟,全液体通气组 = 22 ± 10毫升/千克/分钟,p <.001;气体通气组 = 91 ± 12毫升/千克/分钟,半液体通气组 = 41 ± 11毫升/千克/分钟,p <.001)。肺活检光镜检查显示,与气体通气组动物相比,全/半液体通气组动物的肺泡出血、肺液积聚和炎症浸润明显减少。
在重度ARDS模型中,全液体通气后接半液体通气可改善肺气体交换。全液体通气时肺顺应性改善,但半液体通气时未改善。全液体通气后接半液体通气与肺泡出血、肺水肿和肺炎症浸润减少有关。