Hirschl R B, Merz S I, Montoya J P, Parent A, Wolfson M R, Shaffer T H, Bartlett R H
Department of Surgery, University of Michigan, Ann Arbor.
Crit Care Med. 1995 Jan;23(1):157-63. doi: 10.1097/00003246-199501000-00025.
Perfluorocarbon liquid ventilation has been shown to have advantages over conventional gas ventilation in premature newborn and lung-injured animals. To simplify the process of liquid ventilation, we adapted an extra-corporeal life-support circuit as a time-cycled, volume-limited liquid ventilator.
Laboratory study that involved sequential application of gas and liquid ventilation in normal cats and in lung-injured sheep.
A research laboratory at a university medical center.
Eight normal cats weighing 2.7 to 3.8 kg (mean 3.1 +/- 0.5), and four lung-injured young sheep weighing 10.4 to 22.5 kg (mean 15.9 +/- 5.0).
Normal cats were supported with traditional gas ventilation for 1 hr (respiratory rate 20 breaths/min, peak inspiratory pressure 12 cm H2O, positive end-expiratory pressure 4 cm H2O, and FIO2 1.0). The lungs were then filled with perfluorocarbon (30 mL/kg) and tidal volume liquid ventilation was instituted, utilizing a newly developed liquid ventilation device. Liquid ventilatory settings were 4 secs for inspiration time, 8 secs for expiration time, 5 breaths/min for respiratory rate, and 15 to 20 mL/kg for tidal volume. Liquid ventilation utilizing this device was also applied to sheep after induction of severe lung injury by right atrial injection of 0.07 mL/kg of oleic acid, followed by saline pulmonary lavage. Extracorporeal life support was instituted to provide a stable model of lung injury. For the first 30 mins of extracorporeal support, all animals were ventilated with gas. Animals were then ventilated with 15 mL/kg of perfluorocarbon over the ensuing 2.5 hrs.
In normal cats, mean PaO2 values after 1 hr of liquid or gas ventilation were 275 +/- 90 (SD) torr (36.7 +/- 10.4 kPa) in the liquid-ventilated animals and 332 +/- 78 torr (44.3 +/- 10.4 kPa) in the gas-ventilated animals (NS). Mean PaCO2 values were 40.5 +/- 5.7 torr (5.39 +/- 0.31 kPa) in the liquid-ventilated animals and 37.6 +/- 2.3 torr (5.01 +/- 0.31 kPa) in the gas-ventilated animals (NS). Mean arterial pH values were 7.35 +/- 0.07 in the liquid-ventilated animals and 7.34 +/- 0.04 in the gas-ventilated animals (NS). No significant changes in heart rate, mean arterial pressure, lung compliance, or right atrial venous oxygen saturation were observed during liquid ventilation when compared with gas ventilation. In the lung-injured sheep, an increase in physiologic shunt from 15 +/- 7% to 66 +/- 9% was observed with induction of lung injury during gas ventilation. Liquid ventilation resulted in a significant reduction in physiologic shunt to 31 +/- 10% (p < .001). In addition, the extracorporeal blood flow rate required to maintain the PaO2 in the 50 to 80 torr (6.7 to 10.7 kPa) range was substantially and significantly (p < .001) lower during liquid ventilation than during gas ventilation (liquid ventilation 15 +/- 5 vs. gas ventilation 87 +/- 15 mL/min/kg).
Liquid ventilation can be performed successfully utilizing this simple adaptation of an extracorporeal life-support circuit. This modification to an existing extracorporeal circuit may allow other centers to apply this new investigational method of ventilation in the laboratory or clinical setting.
全氟化碳液体通气已被证明在早产新生儿和肺损伤动物中比传统气体通气具有优势。为简化液体通气过程,我们采用体外生命支持回路作为定时、容量限制的液体通气机。
实验室研究,涉及在正常猫和肺损伤绵羊中依次应用气体和液体通气。
大学医学中心的研究实验室。
8只体重2.7至3.8千克(平均3.1±0.5千克)的正常猫,以及4只体重10.4至22.5千克(平均15.9±5.0千克)的肺损伤幼羊。
正常猫用传统气体通气支持1小时(呼吸频率20次/分钟,吸气峰压12厘米水柱,呼气末正压4厘米水柱,吸入氧分数1.0)。然后用全氟化碳(30毫升/千克)填充肺部,并使用新开发的液体通气装置进行潮气量液体通气。液体通气设置为吸气时间4秒,呼气时间8秒,呼吸频率5次/分钟,潮气量15至20毫升/千克。在通过右心房注射0.07毫升/千克油酸诱导严重肺损伤,随后进行盐水肺灌洗后,也将使用该装置的液体通气应用于绵羊。采用体外生命支持以提供稳定的肺损伤模型。在体外支持的前30分钟,所有动物用气体通气。然后在接下来的2.5小时内用15毫升/千克全氟化碳对动物进行通气。
在正常猫中,液体或气体通气1小时后的平均动脉血氧分压值在液体通气动物中为275±90(标准差)托(36.7±10.4千帕),在气体通气动物中为332±78托(44.3±10.4千帕)(无显著差异)。液体通气动物的平均动脉血二氧化碳分压值为40.5±5.7托(5.39±0.31千帕),气体通气动物为37.6±2.3托(5.01±0.31千帕)(无显著差异)。液体通气动物的平均动脉血pH值为7.35±0.07,气体通气动物为7.34±0.04(无显著差异)。与气体通气相比,液体通气期间未观察到心率、平均动脉压、肺顺应性或右心房静脉血氧饱和度有显著变化。在肺损伤绵羊中,气体通气期间诱导肺损伤时,生理分流从15±7%增加到66±9%。液体通气导致生理分流显著降低至31±10%(p<0.001)。此外,液体通气期间维持动脉血氧分压在50至80托(6.7至10.7千帕)范围内所需的体外血流量比气体通气期间显著降低(p<0.001)(液体通气15±5与气体通气87±15毫升/分钟/千克)。
利用这种对体外生命支持回路的简单改造可以成功进行液体通气。对现有体外回路的这种改进可能使其他中心能够在实验室或临床环境中应用这种新的通气研究方法。