Suppr超能文献

Identification and characterization of vascular endothelial growth factor receptor (Flt) in bovine retinal pericytes.

作者信息

Takagi H, King G L, Aiello L P

机构信息

Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215, USA.

出版信息

Diabetes. 1996 Aug;45(8):1016-23. doi: 10.2337/diab.45.8.1016.

Abstract

Vascular endothelial growth factor (VEGF) plays an important role in the hypoxia-stimulated neovascularization of ischemic retinal diseases such as proliferative diabetic retinopathy. VEGF exerts its effect through two known high-affinity tyrosine kinase receptors, named kinase insert domain-containing receptor (KDR) and the fms-like tyrosine kinase (Flt). VEGF receptors are located primarily on endothelial cells, although receptors on a few other nonocular cell types also have been described. In the present study, we demonstrate the expression of Flt, but not KDR, in bovine retinal pericytes (BRPCs). Although KDR is expressed predominantly in retinal endothelial cells, Northern blot analysis demonstrated substantial expression of the Flt gene in BRPCs without detection of KDR despite using polyadenylated RNA. Hypoxia increased Flt gene expression in BRPCs (2.7-fold, P < 0.01). 125I-labeled VEGF binding analysis on BRPCs demonstrated two apparent high-affinity receptor subtypes (Kd = 14 and 215 pmol/l), with 2.9 x 10(4) and 1.4 x 10(5) receptors/cell, respectively. 125I-VEGF affinity cross-linking demonstrated VEGF-specific binding complexes at 150, 172, 187, and 200 kDa under reducing conditions. Western blot analysis using an anti-phosphotyrosine antibody demonstrated VEGF-induced tyrosine phosphorylation of several proteins. VEGF stimulation had little effect on initial BRPCs growth rates but significantly increased BRPCs number after 7 days. These results suggest that two classes of high-affinity VEGF receptors are present on BRPCs, at least one of which is analogous to Flt and is capable of intracellular protein phosphorylation. Thus, VEGF might regulate the function of both retinal endothelial cells and retinal pericytes to induce pathological angiogenesis and vascular remodeling during proliferative diabetic retinopathy and other ischemic retinal diseases.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验