Suppr超能文献

相似性中基于比对的非单调性。

Alignment-based nonmonotonicities in similarity.

作者信息

Goldstone R L

机构信息

Psychology Department, Indiana University, Bloomington 47405, USA.

出版信息

J Exp Psychol Learn Mem Cogn. 1996 Jul;22(4):988-1001. doi: 10.1037//0278-7393.22.4.988.

Abstract

According to the assumption of monotonicity in similarity judgments, adding a shared feature in common to 2 items should never decrease their similarity. Violations of monotonicity are not predicted by feature- or dimension-based models but can be accommodated by alignment-based models in which the parts of one compared display are placed in correspondence with the parts of the other display. In 2 experiments, evidence for nonmonotonicities is obtained that is generally consistent with the alignment-based model SIAM (similarity as interactive activation and mapping; R.L. Goldstone, 1994). The calculation of similarity in this model involves an interactive activation process whereby correspondences between the parts of compared displays mutually and concurrently influence each other. As SIAM predicts, the occurrence of nonmonotonicities depends on perceptual similarity of features and the duration of presented comparison.

摘要

根据相似性判断中的单调性假设,给两个项目添加一个共同的共享特征,其相似性绝不应降低。基于特征或维度的模型无法预测单调性的违反情况,但基于对齐的模型可以解释,在基于对齐的模型中,一个被比较显示的部分与另一个显示的部分相对应。在两项实验中,获得了与基于对齐的模型SIAM(相似性作为交互式激活和映射;R.L.戈德斯通,1994)总体一致的非单调性证据。该模型中的相似性计算涉及一个交互式激活过程,通过这个过程,被比较显示部分之间的对应关系相互且同时地影响彼此。正如SIAM所预测的,非单调性的出现取决于特征的感知相似性和呈现比较的持续时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验