Suppr超能文献

一种用于比较生存曲线的联合风险与时间尺度模型。

A joint hazard and time scaling model to compare survival curves.

作者信息

Klawansky S, Fox M S

机构信息

Department of Health Policy and Management, Harvard School of Public Health, Boston, MA 02115, USA.

出版信息

Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8183-8. doi: 10.1073/pnas.93.16.8183.

Abstract

To provide a more general method for comparing survival experience, we propose a model that independently scales both hazard and time dimensions. To test the curve shape similarity of two time-dependent hazards, h1(t) and h2(t), we apply the proposed hazard relationship, h12(tKt)/ h1(t) = Kh, to h1. This relationship doubly scales h1 by the constant hazard and time scale factors, Kh and Kt, producing a transformed hazard, h12, with the same underlying curve shape as h1. We optimize the match of h12 to h2 by adjusting Kh and Kt. The corresponding survival relationship S12(tKt) = [S1(t)]KtKh transforms S1 into a new curve S12 of the same underlying shape that can be matched to the original S2. We apply this model to the curves for regional and local breast cancer contained in the National Cancer Institute's End Results Registry (1950-1973). Scaling the original regional curves, h1 and S1 with Kt = 1.769 and Kh = 0.263 produces transformed curves h12 and S12 that display congruence with the respective local curves, h2 and S2. This similarity of curve shapes suggests the application of the more complete curve shapes for regional disease as templates to predict the long-term survival pattern for local disease. By extension, this similarity raises the possibility of scaling early data for clinical trial curves according to templates of registry or previous trial curves, projecting long-term outcomes and reducing costs. The proposed model includes as special cases the widely used proportional hazards (Kt = 1) and accelerated life (KtKh = 1) models.

摘要

为了提供一种更通用的方法来比较生存经验,我们提出了一个模型,该模型能独立地对风险和时间维度进行缩放。为了检验两个随时间变化的风险函数(h_1(t))和(h_2(t))的曲线形状相似性,我们将所提出的风险关系(h_{12}(tK_t)/h_1(t)=K_h)应用于(h_1)。这种关系通过恒定的风险和时间缩放因子(K_h)和(K_t)对(h_1)进行双重缩放,从而产生一个与(h_1)具有相同潜在曲线形状的变换后的风险函数(h_{12})。我们通过调整(K_h)和(K_t)来优化(h_{12})与(h_2)的匹配度。相应的生存关系(S_{12}(tK_t)=[S_1(t)]^{K_tK_h})将(S_1)变换为具有相同潜在形状的新曲线(S_{12}),该曲线可与原始的(S_2)进行匹配。我们将此模型应用于美国国立癌症研究所终末结果登记处(1950 - 1973年)中包含的局部和区域乳腺癌曲线。用(K_t = 1.769)和(K_h = 0.263)对原始区域曲线(h_1)和(S_1)进行缩放,得到的变换后曲线(h_{12})和(S_{12})与各自的局部曲线(h_2)和(S_2)显示出一致性。这种曲线形状的相似性表明,可将更完整的区域疾病曲线形状用作模板来预测局部疾病的长期生存模式。由此推断,这种相似性增加了根据登记处模板或先前试验曲线对临床试验曲线的早期数据进行缩放、预测长期结果并降低成本的可能性。所提出的模型在特殊情况下包括广泛使用的比例风险模型((K_t = 1))和加速寿命模型((K_tK_h = 1))。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验