Strömberg U
Department of Occupational and Environmental Medicine, University Hospital, Lund University, Sweden.
Am J Epidemiol. 1996 Aug 15;144(4):421-4. doi: 10.1093/oxfordjournals.aje.a008944.
When analyzing and interpreting data from an epidemiologic study where ordinal (ordered categorical) outcomes have been measured in different exposure groups, an effect parameter of interest is the common odds ratio implied by the proportional odds model. This model can sometimes be applied to a collapsed outcome variable, instead of the measured variable, without reducing efficiency considerably. However, in a given data set, changing the outcome categories can affect the effect estimate as well as the inference being drawn from the data, even if the true effect itself has not changed. In particular, one should be careful in dichotomizing the measured outcome variable.
在分析和解释来自一项流行病学研究的数据时,若在不同暴露组中测量了有序(分类有序)结局,则一个感兴趣的效应参数是比例优势模型所隐含的共同优势比。该模型有时可应用于合并后的结局变量,而非测量变量,且不会大幅降低效率。然而,在给定的数据集中,改变结局类别可能会影响效应估计以及从数据中得出的推断,即便真实效应本身并未改变。尤其要注意的是,在将测量的结局变量二分法化时应谨慎。