Suppr超能文献

用于评估重度流感住院治疗的有序终点分析。

Analysis of an ordinal endpoint for use in evaluating treatments for severe influenza requiring hospitalization.

作者信息

Peterson Ross L, Vock David M, Powers John H, Emery Sean, Cruz Eduardo Fernandez, Hunsberger Sally, Jain Mamta K, Pett Sarah, Neaton James D

机构信息

1 Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.

2 School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA.

出版信息

Clin Trials. 2017 Jun;14(3):264-276. doi: 10.1177/1740774517697919. Epub 2017 Mar 6.

Abstract

Background/Aims A single best endpoint for evaluating treatments of severe influenza requiring hospitalization has not been identified. A novel six-category ordinal endpoint of patient status is being used in a randomized controlled trial (FLU-Intravenous Immunoglobulin - FLU-IVIG) of intravenous immunoglobulin. We systematically examine four factors regarding the use of this ordinal endpoint that may affect power from fitting a proportional odds model: (1) deviations from the proportional odds assumption which result in the same overall treatment effect as specified in the FLU-IVIG protocol and which result in a diminished overall treatment effect, (2) deviations from the distribution of the placebo group assumed in the FLU-IVIG design, (3) the effect of patient misclassification among the six categories, and (4) the number of categories of the ordinal endpoint. We also consider interactions between the treatment effect (i.e. factor 1) and each other factor. Methods We conducted a Monte Carlo simulation study to assess the effect of each factor. To study factor 1, we developed an algorithm for deriving distributions of the ordinal endpoint in the two treatment groups that deviated from proportional odds while maintaining the same overall treatment effect. For factor 2, we considered placebo group distributions which were more or less skewed than the one specified in the FLU-IVIG protocol by adding or subtracting a constant from the cumulative log odds. To assess factor 3, we added misclassification between adjacent pairs of categories that depend on subjective patient/clinician assessments. For factor 4, we collapsed some categories into single categories. Results Deviations from proportional odds reduced power at most from 80% to 77% given the same overall treatment effect as specified in the FLU-IVIG protocol. Misclassification and collapsing categories can reduce power by over 40 and 10 percentage points, respectively, when they affect categories with many patients and a discernible treatment effect. But collapsing categories that contain no treatment effect can raise power by over 20 percentage points. Differences in the distribution of the placebo group can raise power by over 20 percentage points or reduce power by over 40 percentage points depending on how patients are shifted to portions of the ordinal endpoint with a large treatment effect. Conclusion Provided that the overall treatment effect is maintained, deviations from proportional odds marginally reduce power. However, deviations from proportional odds can modify the effect of misclassification, the number of categories, and the distribution of the placebo group on power. In general, adjacent pairs of categories with many patients should be kept separate to help ensure that power is maintained at the pre-specified level.

摘要

背景/目的:尚未确定用于评估需住院治疗的重症流感治疗效果的单一最佳终点。在一项静脉注射免疫球蛋白的随机对照试验(流感-静脉注射免疫球蛋白-FLU-IVIG)中,正在使用一种新的六分类患者状态序数终点。我们系统地研究了关于使用此序数终点可能影响拟合比例优势模型的检验效能的四个因素:(1)偏离比例优势假设,这导致与FLU-IVIG方案中规定的相同总体治疗效果以及导致总体治疗效果降低;(2)偏离FLU-IVIG设计中假设的安慰剂组分布;(3)六个类别之间患者错误分类的影响;(4)序数终点的类别数量。我们还考虑了治疗效果(即因素1)与其他每个因素之间的相互作用。方法:我们进行了一项蒙特卡洛模拟研究,以评估每个因素的影响。为研究因素1,我们开发了一种算法,用于推导两个治疗组中偏离比例优势但保持相同总体治疗效果的序数终点分布。对于因素2,我们通过在累积对数优势上加上或减去一个常数来考虑比FLU-IVIG方案中规定的分布更偏或更不偏的安慰剂组分布。为评估因素3,我们在相邻类别对之间添加了依赖于主观患者/临床医生评估的错误分类。对于因素4,我们将一些类别合并为单个类别。结果:在与FLU-IVIG方案中规定的相同总体治疗效果下,偏离比例优势最多可使检验效能从80%降至77%。当错误分类和合并类别影响有许多患者且有明显治疗效果的类别时,它们可分别使检验效能降低超过40和10个百分点。但合并无治疗效果的类别可使检验效能提高超过20个百分点。安慰剂组分布的差异可使检验效能提高超过20个百分点或降低超过40个百分点,这取决于患者如何转移到序数终点中具有大治疗效果的部分。结论:只要总体治疗效果得以维持,偏离比例优势只会略微降低检验效能。然而,偏离比例优势可改变错误分类、类别数量和安慰剂组分布对检验效能的影响。一般来说,有许多患者的相邻类别对应保持分开,以帮助确保检验效能维持在预先指定的水平。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验