Suppr超能文献

海马体突触快速兴奋性突触传递的蒙特卡罗模拟

Monte Carlo simulation of fast excitatory synaptic transmission at a hippocampal synapse.

作者信息

Wahl L M, Pouzat C, Stratford K J

机构信息

University Laboratory of Physiology, Oxford, United Kingdom.

出版信息

J Neurophysiol. 1996 Feb;75(2):597-608. doi: 10.1152/jn.1996.75.2.597.

Abstract
  1. A simulation of fast excitatory synaptic transmission at a hippocampal synapse is presented. Individual neurotransmitter molecules are followed as they diffuse through the synaptic cleft and interact with the postsynaptic receptors. The ability of the model to reproduce published results of patch-clamp experiments on CA3 pyramidal cells is illustrated; parameters of the model that affect the time course and variability of the excitatory postsynaptic current (EPSC) are then investigated. 2. To simulate an EPSC, we release 4,000 neurotransmitter molecules simultaneously from a point source centered 15 nm above a rectangular grid of 14 x 14 postsynaptic receptors. The simulated EPSC at room temperature has a 10-90% rise time of 0.28 ms and a peak open probability of 0.27, and decays with a time constant of 2.33 ms, comparing well with values in the literature. 3. To simulate changes in temperature, we use a 10 degrees temperature coefficient (Q10) for diffusion of 1.3 and apply a Q10 of 3.0 to all the rate constants of the kinetic scheme. At 37 degrees C, the 10-90 rise time is 0.07 ms, the peak open probability is 0.56, and the decay time constant is 0.70 ms. The coefficient of variation (CV) at the peak of the EPSC is 9.4% at room temperature; at 37 degrees C, the CV at the peak drops to 6.6%. 4. We use the diffusion coefficient of glutamine, 7.6 x 10(-6) cm2/s, to model the random movement of glutamate molecules in the synaptic cleft. Slower rates of diffusion increase the peak response and slow the time course of decay of the EPSC. 5. Random variations in release site position have little effect on the time course of the average EPSC or on the CV of the peak response. We simulate a dose-response curve for the effects of releasing between 100 and 7,500 neurotransmitter molecules per vesicle. The half-maximal response occurs for 1,740 molecules. For a simulation with 100 postsynaptic receptors and a diffusion coefficient of 2.0 x 10(-6) cm2/s, 4,000 molecules approaches a saturating dose. 6. Changes to the width of the synaptic cleft, or to the number and spacing of the postsynaptic receptors, have marked effects on the peak height of the simulated EPSC. 7. We extend the model to include a spherical vesicle (50 nm diam) connected to the synaptic cleft by a cylindrical pore 15 nm long. Neurotransmitter molecules are randomly distributed within the vesicle and allowed to diffuse into the synaptic cleft through the pore, which opens to its full diameter in one time step. We find that the pore must open to a diameter of > or = 7 nm within 1 microsecond in order to match the time courses of EPSCs in the literature.
摘要
  1. 本文展示了海马突触处快速兴奋性突触传递的模拟。追踪单个神经递质分子在突触间隙扩散并与突触后受体相互作用的过程。说明了该模型重现已发表的关于CA3锥体细胞膜片钳实验结果的能力;随后研究了影响兴奋性突触后电流(EPSC)时间进程和变异性的模型参数。2. 为模拟EPSC,我们从位于14×14个突触后受体矩形网格上方15 nm处的点源同时释放4000个神经递质分子。室温下模拟的EPSC的10 - 90%上升时间为0.28 ms,峰值开放概率为0.27,并以2.33 ms的时间常数衰减,与文献中的值比较吻合。3. 为模拟温度变化,我们对扩散的温度系数(Q10)采用1.3,并对动力学方案的所有速率常数应用Q10为3.0。在37℃时,10 - 90上升时间为0.07 ms,峰值开放概率为0.56,衰减时间常数为0.70 ms。EPSC峰值处的变异系数(CV)在室温下为9.4%;在37℃时,峰值处的CV降至6.6%。4. 我们使用谷氨酰胺的扩散系数7.6×10⁻⁶ cm²/s来模拟谷氨酸分子在突触间隙中的随机运动。较慢的扩散速率会增加峰值响应并减缓EPSC的衰减时间进程。5. 释放位点位置的随机变化对平均EPSC的时间进程或峰值响应的CV影响很小。我们模拟了每个囊泡释放100至7500个神经递质分子的效应的剂量 - 反应曲线。半数最大反应发生在1740个分子时。对于具有100个突触后受体且扩散系数为2.0×10⁻⁶ cm²/s的模拟,4000个分子接近饱和剂量。6. 突触间隙宽度的变化,或突触后受体的数量和间距的变化,对模拟EPSC的峰值高度有显著影响。7. 我们将模型扩展为包括一个直径50 nm的球形囊泡,通过一个15 nm长的圆柱形孔连接到突触间隙。神经递质分子随机分布在囊泡内,并通过该孔扩散到突触间隙,该孔在一个时间步长内打开至其全直径。我们发现该孔必须在1微秒内打开至直径≥7 nm,以便与文献中EPSC的时间进程相匹配。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验