Suppr超能文献

Toward an exhaustive sampling of the configurational spaces of the two forms of the peptide hormone guanylin.

作者信息

de Groot B L, Amadei A, van Aalten D M, Berendsen H J

机构信息

Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Department of Biophysical Chemistry, University of Groningen, The Netherlands.

出版信息

J Biomol Struct Dyn. 1996 Apr;13(5):741-51. doi: 10.1080/07391102.1996.10508888.

Abstract

The recently introduced Essential Dynamics sampling method is extended such that an exhaustive sampling of the available (backbone) configurational space can be achieved. From an initial Molecular Dynamics simulation an approximated definition of the essential subspace is obtained. This subspace is used to direct subsequent simulations by means of constraint forces. The method is applied to the peptide hormone guanylin, solvated in water, of which the structure was determined recently. The peptide exists in two forms and for both forms, an extensive sampling was produced. The sampling algorithm fills the available space (of the essential coordinates used in the procedure) at a rate that is approximately six to seven times larger than that for traditional Molecular Dynamics. The procedure does not cause any significant perturbation, which is indicated by the fact that free Molecular Dynamics simulations started at several places in the space defined by the Essential Dynamics sample that complete space. Moreover, analyses of the average free Molecular Dynamics step have shown that nowhere except close to the edge of the available space, there are regions where the system shows a drift in a particular direction. This result also shows that in principle, the essential subspace is a constant free energy surface, with well-defined and steep borders, in which the system moves diffusively. In addition, a comparison between two independent essential dynamics sampling runs, of one form of the peptide, shows that the obtained essential subspaces are virtually identical.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验