Orthopaedic Spinal Research Laboratory, St Joseph Medical Center, Baltimore, Maryland, USA.
J Neurosurg Spine. 2010 Feb;12(2):214-20. doi: 10.3171/2009.9.SPINE08952.
Using a synthetic vertebral model, the authors quantified the comparative fixation strengths and failure mechanisms of 6 cervical disc arthroplasty devices versus 2 conventional methods of cervical arthrodesis, highlighting biomechanical advantages of prosthetic endplate fixation properties.
Eight cervical implant configurations were evaluated in the current investigation: 1) PCM Low Profile; 2) PCM V-Teeth; 3) PCM Modular Flange; 4) PCM Fixed Flange; 5) Prestige LP; 6) Kineflex/C disc; 7) anterior cervical plate + interbody cage; and 8) tricortical iliac crest. All PCM treatments contained a serrated implant surface (0.4 mm). The PCM V-Teeth and Prestige contained 2 additional rows of teeth, which were 1 mm and 2 mm high, respectively. The PCM Modular and Fixed Flanged devices and anterior cervical plate were augmented with 4 vertebral screws. Eight pullout tests were performed for each of the 8 conditions by using a synthetic fixation model consisting of solid rigid polyurethane foam blocks. Biomechanical testing was conducted using an 858 Bionix test system configured with an unconstrained testing platform. Implants were positioned between testing blocks, using a compressive preload of -267 N. Tensile load-to-failure testing was performed at 2.5 mm/second, with quantification of peak load at failure (in Newtons), implant surface area (in square millimeters), and failure mechanisms.
The mean loads at failure for the 8 implants were as follows: 257.4 +/- 28.54 for the PCM Low Profile; 308.8 +/- 15.31 for PCM V-Teeth; 496.36 +/- 40.01 for PCM Modular Flange; 528.03+/- 127.8 for PCM Fixed Flange; 306.4 +/- 31.3 for Prestige LP; 286.9 +/- 18.4 for Kineflex/C disc; 635.53 +/- 112.62 for anterior cervical plate + interbody cage; and 161.61 +/- 16.58 for tricortical iliac crest. The anterior plate exhibited the highest load at failure compared with all other treatments (p < 0.05). The PCM Modular and Fixed Flange PCM constructs in which screw fixation was used exhibited higher pullout loads than all other treatments except the anterior plate (p < 0.05). The PCM VTeeth and Prestige and Kineflex/C implants exhibited higher pullout loads than the PCM Low Profile and tricortical iliac crest (p < 0.05). Tricortical iliac crest exhibited the lowest pullout strength, which was different from all other treatments (p < 0.05). The surface area of endplate contact, measuring 300 mm(2) (PCM treatments), 275 mm(2) (Prestige LP), 250 mm(2) (Kineflex/C disc), 180 mm(2) (plate + cage), and 235 mm(2) (tricortical iliac crest), did not correlate with pullout strength (p > 0.05). The PCM, Prestige, and Kineflex constructs, which did not use screw fixation, all failed by direct pullout. Screw fixation devices, including anterior plates, led to test block fracture, and tricortical iliac crest failed by direct pullout.
These results demonstrate a continuum of fixation strength based on prosthetic endplate design. Disc arthroplasty constructs implanted using vertebral body screw fixation exhibited the highest pullout strength. Prosthetic endplates containing toothed ridges (>or= 1 mm) or keels placed second in fixation strength, whereas endplates containing serrated edges exhibited the lowest fixation strength. All treatments exhibited greater fixation strength than conventional tricortical iliac crest. The current study offers insights into the benefits of various prosthetic endplate designs, which may potentially improve acute fixation following cervical disc arthroplasty.
使用合成椎骨模型,定量比较 6 种颈椎间盘置换装置与 2 种传统颈椎融合术的固定强度和失效机制,突出假体终板固定特性的生物力学优势。
本研究评估了 8 种颈椎植入物配置:1)PCM 低轮廓;2)PCM V 齿;3)PCM 模块化法兰;4)PCM 固定法兰;5)Prestige LP;6)Kineflex/C 盘;7)前路颈椎板+椎间笼;和 8)三叶形髂嵴。所有 PCM 治疗均包含锯齿状植入物表面(0.4 毫米)。PCM V 齿和 Prestige 包含另外两排齿,高度分别为 1 毫米和 2 毫米。PCM 模块化和固定法兰装置以及前路颈椎板通过 4 个椎体螺钉增强。使用由实心刚性聚氨酯泡沫块组成的合成固定模型,对每种情况进行 8 次拔出试验。生物力学测试使用配置有非约束测试平台的 858 Bionix 测试系统进行。将植入物放置在测试块之间,使用-267 N 的压缩预载。以 2.5 毫米/秒的速度进行拉伸至破坏的负载测试,对破坏时的峰值负载(牛顿)、植入物表面积(平方毫米)和失效机制进行定量分析。
8 个植入物的平均破坏负荷如下:PCM 低轮廓为 257.4 +/- 28.54;PCM V 齿为 308.8 +/- 15.31;PCM 模块化法兰为 496.36 +/- 40.01;PCM 固定法兰为 528.03 +/- 127.8;Prestige LP 为 306.4 +/- 31.3;Kineflex/C 盘为 286.9 +/- 18.4;前路颈椎板+椎间笼为 635.53 +/- 112.62;三叶形髂嵴为 161.61 +/- 16.58。与所有其他治疗方法相比,前路板的破坏负荷最高(p < 0.05)。使用螺钉固定的 PCM 模块化和固定法兰 PCM 结构表现出比所有其他治疗方法(除前路板外)更高的拔出负荷(p < 0.05)。PCM V 齿和 Prestige 以及 Kineflex/C 植入物比 PCM 低轮廓和三叶形髂嵴具有更高的拔出负荷(p < 0.05)。三叶形髂嵴表现出最低的拔出强度,与所有其他治疗方法不同(p < 0.05)。终板接触面积为 300 mm(2)(PCM 治疗)、275 mm(2)(Prestige LP)、250 mm(2)(Kineflex/C 盘)、180 mm(2)(板+笼)和 235 mm(2)(三叶形髂嵴),与拔出强度无关(p > 0.05)。未使用螺钉固定的 PCM、Prestige 和 Kineflex 结构均通过直接拔出而失效。包括前路板在内的螺钉固定装置导致测试块断裂,三叶形髂嵴通过直接拔出而失效。
这些结果表明,基于假体终板设计存在固定强度的连续体。使用椎体螺钉固定植入的椎间盘置换装置表现出最高的拔出强度。含有齿状脊(≥1 毫米)或龙骨的假体终板次之,而含有锯齿边缘的终板则表现出最低的固定强度。所有治疗方法的固定强度均大于传统三叶形髂嵴。本研究为各种假体终板设计的优势提供了深入的了解,这可能会提高颈椎间盘置换术后的急性固定效果。