Suppr超能文献

乳腺X线密度的自动分析

Automated analysis of mammographic densities.

作者信息

Byng J W, Boyd N F, Fishell E, Jong R A, Yaffe M J

机构信息

Department of Medical Biophysics and Radiology, University of Toronto, Ontario, Canada.

出版信息

Phys Med Biol. 1996 May;41(5):909-23. doi: 10.1088/0031-9155/41/5/007.

Abstract

Information derived from mammographic parenchymal patterns provides one of the strongest indicators of the risk of developing breast cancer. To address several limitations of subjective classification of mammographic parenchyma into coarse density categories, we have been investigating more quantitative, objective methods of analysing the film-screen mammogram. These include measures of the skewness of the image brightness histogram, and of image texture characterized by the fractal dimension. Both measures were found to be strongly correlated with radiologists' subjective classifications of mammographic parenchyma (Spearman correlation coefficients, Rs = -0.88 and -0.76 for skewness and fractal dimension measurements, respectively). Further, neither measure was strongly dependent on simulated changes in mammographic technique. Correlation with subjective classification of mammographic density was better when both the skewness and fractal measures were used in combination than when either was used alone. This suggests that each feature provides some independent information.

摘要

从乳腺X线实质模式中获得的信息是患乳腺癌风险的最强指标之一。为了解决将乳腺X线实质主观分类为粗略密度类别时的几个局限性,我们一直在研究更定量、客观的方法来分析屏-片乳腺X线摄影图像。这些方法包括图像亮度直方图的偏度测量以及以分形维数为特征的图像纹理测量。结果发现这两种测量方法都与放射科医生对乳腺X线实质的主观分类密切相关(偏度和分形维数测量的斯皮尔曼相关系数分别为Rs = -0.88和-0.76)。此外,这两种测量方法都不强烈依赖于乳腺X线摄影技术的模拟变化。当同时使用偏度和分形测量时,与乳腺X线密度主观分类的相关性比单独使用任何一种测量时更好。这表明每个特征都提供了一些独立的信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验