Suppr超能文献

超越乳腺影像报告和数据系统(BI-RADS)密度:呼吁乳腺影像诊所进行量化

Beyond BI-RADS Density: A Call for Quantification in the Breast Imaging Clinic.

作者信息

Conant Emily F, Sprague Brian L, Kontos Despina

机构信息

From the Department of Radiology, Hospital of the University of Pennsylvania, Perelman School of Medicine, 3400 Spruce St, Philadelphia PA 10104 (E.F.C., D.K.); and Departments of Surgery and Radiology, University of Vermont Cancer Center, Burlington, Vt (B.L.S.).

出版信息

Radiology. 2018 Feb;286(2):401-404. doi: 10.1148/radiol.2017170644.

Abstract

Ultimately, the incorporation of automated quantitative measures of breast density will lead to more effective clinical care and more robust outcomes research than the current, subjective assignment of Breast Imaging and Reporting Data System density categories, by providing reproducible estimates of both the risk of masking a cancer as well as the risk of developing breast cancer—two important factors in determining personalized breast cancer screening algorithms.

摘要

最终,与目前主观指定的乳腺影像报告和数据系统密度类别相比,纳入乳腺密度的自动定量测量将带来更有效的临床护理和更可靠的结果研究,因为它能提供关于掩盖癌症风险以及患乳腺癌风险的可重复估计,而这两个因素是确定个性化乳腺癌筛查算法的重要因素。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验