Ecole Normale Supérieure, Département d'Informatique, Paris, France.
Neural Comput. 2010 Apr;22(4):906-48. doi: 10.1162/neco.2009.05-08-793.
We address here the use of EEG and fMRI, and their combination, in order to estimate the full spatiotemporal patterns of activity on the cortical surface in the absence of any particular assumptions on this activity such as stimulation times. For handling such a high-dimension inverse problem, we propose the use of (1) a global forward model of how these measures are functions of the "neural activity" of a large number of sources distributed on the cortical surface, formalized as a dynamical system, and (2) adaptive filters, as a natural solution to solve this inverse problem iteratively along the temporal dimension. This estimation framework relies on realistic physiological models, uses EEG and fMRI in a symmetric manner, and takes into account both their temporal and spatial information. We use the Kalman filter and smoother to perform such an estimation on realistic artificial data and demonstrate that the algorithm can handle the high dimensionality of these data and that it succeeds in solving this inverse problem, combining efficiently the information provided by the two modalities (this information being naturally predominantly temporal for EEG and spatial for fMRI). It performs particularly well in reconstructing a random temporally and spatially smooth activity spread over the cortex. The Kalman filter and smoother show some limitations, however, which call for the development of more specific adaptive filters. First, they do not cope well with the strong nonlinearity in the model that is necessary for an adequate description of the relation between cortical electric activities and the metabolic demand responsible for fMRI signals. Second, they fail to estimate a sparse activity (i.e., presenting sharp peaks at specific locations and times). Finally their computational cost remains high. We use schematic examples to explain these limitations and propose further developments of our method to overcome them.
我们在这里讨论使用 EEG 和 fMRI,以及它们的组合,以便在不考虑活动的任何特定假设(例如刺激时间)的情况下,估计皮质表面上活动的完整时空模式。为了处理这种高维逆问题,我们提出使用(1)一个全局正向模型,说明这些测量值如何作为分布在皮质表面上的大量源的“神经活动”的函数,形式化为动力系统,以及(2)自适应滤波器,作为解决此沿时间维度迭代的逆问题的自然解决方案。这个估计框架依赖于现实的生理模型,以对称的方式使用 EEG 和 fMRI,并考虑到它们的时间和空间信息。我们使用卡尔曼滤波器和平滑器对真实的人工数据进行这种估计,并证明该算法可以处理这些数据的高维性,并且成功地解决了这个逆问题,有效地结合了两种模式提供的信息(这种信息对于 EEG 主要是时间上的,对于 fMRI 主要是空间上的)。它在重建随机分布在皮质上的时空平滑活动方面表现尤其出色。然而,卡尔曼滤波器和平滑器存在一些局限性,需要开发更具体的自适应滤波器。首先,它们不能很好地处理模型中的强非线性,这种非线性对于描述皮质电活动与负责 fMRI 信号的代谢需求之间的关系是必要的。其次,它们无法估计稀疏活动(即在特定位置和时间出现尖锐峰值)。最后,它们的计算成本仍然很高。我们使用示意性示例来解释这些局限性,并提出进一步发展我们的方法来克服这些局限性。