Suppr超能文献

Fast 3D large-angle spin-echo imaging (3D FLASE).

作者信息

Ma J, Wehrli F W, Song H K

机构信息

Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, USA.

出版信息

Magn Reson Med. 1996 Jun;35(6):903-10. doi: 10.1002/mrm.1910350619.

Abstract

A rapid steady-state 3D spin-echo imaging pulse sequence, based on the principle of nutating the spins by an angle greater than 90 degrees, has been designed and implemented on a clinical 1.5-T whole-body MR scanner. The pulse sequence, denoted fast large-angle spin-echo (FLASE), has been optimized for high-resolution imaging of tissues with short T2 and T2*. Features of FLASE include a minimum-phase Shinnar-Le Roux excitation pulse and distribution of phase- and slice-encoding gradients before and after the 180 degrees refocusing pulse to minimize the critical time delay between inversion and restoration of the residual longitudinal magnetization and for minimizing echo time. A Bloch equation analysis, corroborated by experimental data, shows FLASE signal-to-noise to be superior to its closest analog, 3D rapid spin-echo excitation (RASEE) (Jara et al., Magn Reson Medicine 29, 528 (1993)), and 3D gradient-recalled acquisition in steady state (GRASS). It is demonstrated that with judicious RF phase-cycling and steady state operation, FLASE can produce high-quality microimages free of intravoxel phase dispersion from susceptibility-induced background gradients. The performance of the method is exemplified with ultra high-resolution images of trabecular bone in vitro and in vivo in the human calcaneus and wrist at voxel sizes as low as 98 x 98 x 200 microns3. Finally, the contrast behavior of refocused FLASE can be altered by disrupting the steady state analogous to gradient echo imaging.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验