Suppr超能文献

小鼠脑提取器:使用全局位置编码和SwinUNETR对小鼠MRI进行脑部分割。

Mouse Brain Extractor: Brain segmentation of mouse MRI using global positional encoding and SwinUNETR.

作者信息

Kim Yeun, Hrncir Haley, Meyer Cassandra E, Tabbaa Manal, Moats Rex A, Levitt Pat, Harris Neil G, MacKenzie-Graham Allan, Shattuck David W

机构信息

Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.

Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, USA.

出版信息

bioRxiv. 2024 Sep 8:2024.09.03.611106. doi: 10.1101/2024.09.03.611106.

Abstract

In spite of the great progress that has been made towards automating brain extraction in human magnetic resonance imaging (MRI), challenges remain in the automation of this task for mouse models of brain disorders. Researchers often resort to editing brain segmentation results manually when automated methods fail to produce accurate delineations. However, manual corrections can be labor-intensive and introduce interrater variability. This motivated our development of a new deep-learning-based method for brain segmentation of mouse MRI, which we call Mouse Brain Extractor. We adapted the existing SwinUNETR architecture (Hatamizadeh et al., 2021) with the goal of making it more robust to scale variance. Our approach is to supply the network model with supplementary spatial information in the form of absolute positional encoding. We use a new scheme for positional encoding, which we call Global Positional Encoding (GPE). GPE is based on a shared coordinate frame that is relative to the entire input image. This differs from the positional encoding used in SwinUNETR, which solely employs relative pairwise image patch positions. GPE also differs from the conventional absolute positional encoding approach, which encodes position relative to a subimage rather than the entire image. We trained and tested our method on a heterogeneous dataset of N=223 mouse MRI, for which we generated a corresponding set of manually-edited brain masks. These data were acquired previously in other studies using several different scanners and imaging protocols and included and images of mice with heterogeneous brain structure due to different genotypes, strains, diseases, ages, and sexes. We evaluated our method's results against those of seven existing rodent brain extraction methods and two state-of-the art deep-learning approaches, nnU-Net (Isensee et al., 2018) and SwinUNETR. Overall, our proposed method achieved average Dice scores on the order of 0.98 and average HD95 measures on the order of 100 μm when compared to the manually-labeled brain masks. In statistical analyses, our method significantly outperformed the conventional approaches and performed as well as or significantly better than the nnU-Net and SwinUNETR methods. These results suggest that Global Positional Encoding provides additional contextual information that enables our Mouse Brain Extractor to perform competitively on datasets containing multiple resolutions.

摘要

尽管在人类磁共振成像(MRI)的脑提取自动化方面已经取得了巨大进展,但在针对脑部疾病小鼠模型的这一任务自动化方面仍存在挑战。当自动化方法无法产生准确的轮廓时,研究人员常常求助于手动编辑脑部分割结果。然而,手动校正可能会耗费大量人力,并且会引入评分者间的差异。这促使我们开发一种新的基于深度学习的小鼠MRI脑部分割方法,我们将其称为小鼠脑提取器。我们对现有的SwinUNETR架构(哈塔米扎德等人,2021年)进行了调整,目的是使其对尺度变化更具鲁棒性。我们的方法是为网络模型提供以绝对位置编码形式的补充空间信息。我们使用了一种新的位置编码方案,我们称之为全局位置编码(GPE)。GPE基于相对于整个输入图像的共享坐标框架。这与SwinUNETR中使用的位置编码不同,后者仅采用相对的成对图像块位置。GPE也不同于传统的绝对位置编码方法,后者相对于子图像而非整个图像对位置进行编码。我们在一个包含N = 223个小鼠MRI的异构数据集上训练和测试了我们的方法,为此我们生成了一组相应的手动编辑脑掩码。这些数据是先前在其他研究中使用几种不同的扫描仪和成像协议获取的,并且包括由于不同基因型、品系、疾病、年龄和性别而具有异构脑结构的小鼠的 和 图像。我们将我们方法的结果与七种现有的啮齿动物脑提取方法以及两种先进的深度学习方法nnU-Net(伊森塞等人,2018年)和SwinUNETR的结果进行了评估。总体而言,与手动标记的脑掩码相比,我们提出的方法实现了约0.98的平均骰子系数得分和约100μm的平均HD95测量值。在统计分析中,我们的方法显著优于传统方法,并且与nnU-Net和SwinUNETR方法表现相当或显著更好。这些结果表明,全局位置编码提供了额外的上下文信息,使我们的小鼠脑提取器能够在包含多种分辨率的数据集上具有竞争力地运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65b8/11398355/57c1f12a7f96/nihpp-2024.09.03.611106v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验