Prank K, Kloppstech M, Nowlan S J, Sejnowski T J, Brabant G
Abteilung Klinische Endokrinologie, Medizinische Hochschule Hannover, Germany.
Biophys J. 1996 Jun;70(6):2540-7. doi: 10.1016/S0006-3495(96)79825-9.
The pulsatile pattern of growth hormone (GH) secretion was assessed by sampling blood every 10 min over 24 h in healthy subjects (n = 10) under normal food intake and under fasting conditions (n = 6) and in patients with a GH-producing tumor (acromegaly, n = 6), before and after treatment with the somatostatin analog octreotide. Using autocorrelation, we found no consistent separation in the temporal dynamics of GH secretion in healthy controls and acromegalic patients. Time series prediction based on a single neural network has recently been demonstrated to separate the secretory dynamics of parathyroid hormone in healthy controls from osteoporotic patients. To better distinguish the differences in GH dynamics in healthy subjects and patients, we tested time series predictions based on a single neural network and a more refined system of multiple neural networks acting in parallel (adaptive mixtures of local experts). Both approaches significantly separated GH dynamics under the various conditions. By performing a self-organized segmentation of the alternating phases of secretory bursts and quiescence of GH, we significantly improved the performance of the multiple network system over that of the single network. It thus may represent a potential tool for characterizing alterations of the dynamic regulation associated with diseased states.
通过在正常进食和禁食条件下(n = 6)对10名健康受试者以及6名生长激素分泌瘤患者(肢端肥大症)每10分钟采集一次血样,持续24小时,来评估生长激素(GH)分泌的脉冲模式。在使用生长抑素类似物奥曲肽治疗前后进行上述操作。通过自相关分析,我们发现健康对照者和肢端肥大症患者的GH分泌时间动态并无一致的区分。最近已证明基于单个神经网络的时间序列预测能够区分健康对照者与骨质疏松患者甲状旁腺激素的分泌动态。为了更好地区分健康受试者和患者GH动态的差异,我们测试了基于单个神经网络以及更精细的并行多个神经网络系统(局部专家自适应混合模型)的时间序列预测。两种方法都能显著区分不同条件下的GH动态。通过对GH分泌脉冲和静止的交替阶段进行自组织分割,我们显著提高了多网络系统相对于单网络系统的性能。因此,它可能是表征与疾病状态相关的动态调节改变的潜在工具。